forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dirty_memory_manager.hh
227 lines (190 loc) · 9.19 KB
/
dirty_memory_manager.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
* Copyright (C) 2017 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <boost/intrusive/parent_from_member.hpp>
#include <seastar/core/condition-variable.hh>
#include <seastar/core/future.hh>
#include <seastar/core/metrics_registration.hh>
#include <seastar/core/semaphore.hh>
#include "database_fwd.hh"
#include "utils/logalloc.hh"
class dirty_memory_manager;
class sstable_write_permit final {
friend class dirty_memory_manager;
stdx::optional<semaphore_units<>> _permit;
sstable_write_permit() noexcept = default;
explicit sstable_write_permit(semaphore_units<>&& units) noexcept
: _permit(std::move(units)) {
}
public:
sstable_write_permit(sstable_write_permit&&) noexcept = default;
sstable_write_permit& operator=(sstable_write_permit&&) noexcept = default;
static sstable_write_permit unconditional() {
return sstable_write_permit();
}
};
class flush_permit {
friend class dirty_memory_manager;
dirty_memory_manager* _manager;
sstable_write_permit _sstable_write_permit;
semaphore_units<> _background_permit;
flush_permit(dirty_memory_manager* manager, sstable_write_permit&& sstable_write_permit, semaphore_units<>&& background_permit)
: _manager(manager)
, _sstable_write_permit(std::move(sstable_write_permit))
, _background_permit(std::move(background_permit)) {
}
public:
flush_permit(flush_permit&&) noexcept = default;
flush_permit& operator=(flush_permit&&) noexcept = default;
sstable_write_permit release_sstable_write_permit() {
return std::move(_sstable_write_permit);
}
future<flush_permit> reacquire_sstable_write_permit() &&;
};
class dirty_memory_manager: public logalloc::region_group_reclaimer {
logalloc::region_group_reclaimer _real_dirty_reclaimer;
// We need a separate boolean, because from the LSA point of view, pressure may still be
// mounting, in which case the pressure flag could be set back on if we force it off.
bool _db_shutdown_requested = false;
database* _db;
// The _real_region_group protects against actual dirty memory usage hitting the maximum. Usage
// for this group is the real dirty memory usage of the system.
logalloc::region_group _real_region_group;
// The _virtual_region_group accounts for virtual memory usage. It is defined as the real dirty
// memory usage minus bytes that were already written to disk.
logalloc::region_group _virtual_region_group;
// We would like to serialize the flushing of memtables. While flushing many memtables
// simultaneously can sustain high levels of throughput, the memory is not freed until the
// memtable is totally gone. That means that if we have throttled requests, they will stay
// throttled for a long time. Even when we have virtual dirty, that only provides a rough
// estimate, and we can't release requests that early.
semaphore _flush_serializer;
// We will accept a new flush before another one ends, once it is done with the data write.
// That is so we can keep the disk always busy. But there is still some background work that is
// left to be done. Mostly, update the caches and seal the auxiliary components of the SSTable.
// This semaphore will cap the amount of background work that we have. Note that we're not
// overly concerned about memtable memory, because dirty memory will put a limit to that. This
// is mostly about dangling continuations. So that doesn't have to be a small number.
static constexpr unsigned _max_background_work = 20;
semaphore _background_work_flush_serializer = { _max_background_work };
condition_variable _should_flush;
int64_t _dirty_bytes_released_pre_accounted = 0;
future<> flush_when_needed();
future<> _waiting_flush;
virtual void start_reclaiming() noexcept override;
bool has_pressure() const {
return over_soft_limit();
}
seastar::metrics::metric_groups _metrics;
public:
void setup_collectd(sstring namestr);
future<> shutdown();
// Limits and pressure conditions:
// ===============================
//
// Virtual Dirty
// -------------
// We can't free memory until the whole memtable is flushed because we need to keep it in memory
// until the end, but we can fake freeing memory. When we are done with an element of the
// memtable, we will update the region group pretending memory just went down by that amount.
//
// Because the amount of memory that we pretend to free should be close enough to the actual
// memory used by the memtables, that effectively creates two sub-regions inside the dirty
// region group, of equal size. In the worst case, we will have <memtable_total_space> dirty
// bytes used, and half of that already virtually freed.
//
// Hard Limit
// ----------
// The total space that can be used by memtables in each group is defined by the threshold, but
// we will only allow the region_group to grow to half of that. This is because of virtual_dirty
// as explained above. Because virtual dirty is implemented by reducing the usage in the
// region_group directly on partition written, we want to throttle every time half of the memory
// as seen by the region_group. To achieve that we need to set the hard limit (first parameter
// of the region_group_reclaimer) to 1/2 of the user-supplied threshold
//
// Soft Limit
// ----------
// When the soft limit is hit, no throttle happens. The soft limit exists because we don't want
// to start flushing only when the limit is hit, but a bit earlier instead. If we were to start
// flushing only when the hard limit is hit, workloads in which the disk is fast enough to cope
// would see latency added to some requests unnecessarily.
//
// We then set the soft limit to 80 % of the virtual dirty hard limit, which is equal to 40 % of
// the user-supplied threshold.
dirty_memory_manager(database& db, size_t threshold, double soft_limit)
: logalloc::region_group_reclaimer(threshold / 2, threshold * soft_limit / 2)
, _real_dirty_reclaimer(threshold)
, _db(&db)
, _real_region_group(_real_dirty_reclaimer)
, _virtual_region_group(&_real_region_group, *this)
, _flush_serializer(1)
, _waiting_flush(flush_when_needed()) {}
dirty_memory_manager() : logalloc::region_group_reclaimer()
, _db(nullptr)
, _real_region_group(_real_dirty_reclaimer)
, _virtual_region_group(&_real_region_group, *this)
, _flush_serializer(1)
, _waiting_flush(make_ready_future<>()) {}
static dirty_memory_manager& from_region_group(logalloc::region_group *rg) {
return *(boost::intrusive::get_parent_from_member(rg, &dirty_memory_manager::_virtual_region_group));
}
logalloc::region_group& region_group() {
return _virtual_region_group;
}
const logalloc::region_group& region_group() const {
return _virtual_region_group;
}
void revert_potentially_cleaned_up_memory(logalloc::region* from, int64_t delta) {
_real_region_group.update(-delta);
_virtual_region_group.update(delta);
_dirty_bytes_released_pre_accounted -= delta;
}
void account_potentially_cleaned_up_memory(logalloc::region* from, int64_t delta) {
_real_region_group.update(delta);
_virtual_region_group.update(-delta);
_dirty_bytes_released_pre_accounted += delta;
}
void pin_real_dirty_memory(int64_t delta) {
_real_region_group.update(delta);
}
void unpin_real_dirty_memory(int64_t delta) {
_real_region_group.update(-delta);
}
size_t real_dirty_memory() const {
return _real_region_group.memory_used();
}
size_t virtual_dirty_memory() const {
return _virtual_region_group.memory_used();
}
future<> flush_one(memtable_list& cf, flush_permit&& permit);
future<flush_permit> get_flush_permit() {
return get_units(_background_work_flush_serializer, 1).then([this] (auto&& units) {
return this->get_flush_permit(std::move(units));
});
}
private:
future<flush_permit> get_flush_permit(semaphore_units<>&& background_permit) {
return get_units(_flush_serializer, 1).then([this, background_permit = std::move(background_permit)] (auto&& units) mutable {
return flush_permit(this, sstable_write_permit(std::move(units)), std::move(background_permit));
});
}
friend class flush_permit;
};
extern thread_local dirty_memory_manager default_dirty_memory_manager;