
Kernel Sanders: CSAW ESC’19 Quals
Grant Hernandez∗, Claire Seiler∗, Owen Flannagan∗, Hunter Searle∗, Kevin R.B. Butler∗

∗University of Florida, Gainesville, FL, USA
{grant.hernandez, cseiler, owenflannagan, huntersearle, butler}@ufl.edu

I. Introduction

The advent of Radio Frequency Identification (RFID)
technology has quickly been followed by its rapid and per-
vasive integration across multiple industries, from trans-
portation to security. However, with its widespread adop-
tion comes an increased need to investigate the potential
security implications of integrating RFID technology. As
RFID is commonly utilized for a wide variety of authenti-
cation, access control, asset tracking, payment, and iden-
tification applications, these systems could be vulnerable
to attacks that exploit the underlying RFID technology.
RFID systems typically consist of three main compo-

nents: an RFID tag, an RFID reader, and an antenna.
A reader, which is a two-way radio transmitter-receiver,
sends radio frequency signals to tags and reads the re-
sponse. Tags, which store data like serial numbers, can be
read-only or read/write. Additionally, the tags may also be
designated as passive or active, meaning they are powered
by the radio energy transmitted by the reader or by an
on-board battery, respectively.
These systems raise a variety of security concerns; they

are potentially vulnerable to a variety of eavesdropping,
spoofing, or jamming methods. Additionally, common re-
verse engineering and firmware exploitation techniques can
be applied to the exploitation of RFID readers.
RFID readers, like other embedded devices, contain

firmware in non-volatile, flash memory. This firmware can
be extracted from a physical memory chip using tools
like flashrom, binwalk, Bus Pirates, and logic analyzers.
Alternatively, if available, JTAG/SWD could be used to
perform a memory dump of the running CPU if accessing
the firmware via NOR/NAND flash is too difficult. After
extraction, static and dynamic analysis can be done to
identify potential vulnerabilities that could lead to com-
promise of the reader. In static analysis, disassemblers like
GHIDRA, IDA Pro, radare2, or Binary Ninja can be lever-
aged to analyze the assembly instructions corresponding
to the firmware. A decompiler can assist in understanding
and to recreate the source code in a high level language.
Once disassembled or decompiled, specific vulnerabil-

ities can be identified and targeted exploits can be de-
veloped. Vulnerabilities like stack- and heap-based buffer
overflows, off-by-one errors, integer overflows, uncontrolled
format strings, poor input validation and sanitization, OS
command injection, disabled (but not removed) debugging
functionality, and hardcoded credentials often plague em-

bedded firmware, which typically rely on languages with
manual memory management like C or C++. Thus, these
types of vulnerabilities can serve as a guide to analyzing
the disassembled firmware of an RFID reader.
After identifying a vulnerability, a targeted exploit

can be created. Mitigations like stack canaries, heap
protection, ARM’s specific eXecute Never (XN), RELo-
cation Read-Only (RELRO), Position-Independent Exe-
cutable (PIE), and Address Space Layout Randomization
(ASLR) can be overcome with some ingenuity and tech-
niques like return-oriented programming (ROP) chaining,
stack smashing, heap spraying, information disclosures
and more. Exploit writing frameworks, such as pwntools,
can assist in developing an exploit for an RFID reader’s
firmware, depending on the device architecture and the
protections enabled.

II. Challenge
To begin our analysis of the given qualification.out

object, we start by running the GNU file command on
it.
1 qualification .out: ELF 64- bit LSB

executable , x86 -64, ... , not
stripped

Immediately we know that this is an x86-64 ELF binary
executable, which is unstripped, meaning functions should
have names. Next running strings on the binary (“...”
means snipped text) we see:
1 ...
2 Great Job! The flag is what you entered
3 The flag is <<shhimhiding >>
4 ;*3$"
5 GCC: (Ubuntu 4.8.4 -2 ubuntu1 ~14.04.4)

4.8.4
6 ...
7 qualification .cpp
8 ...
9 _Z14secretFunctionv

10 ...
11 _Z17challengeFunctionPc

From the strings, we see a “good flag” message, an actual
flag, that this binary was written as C++, and two C++
mangled functions.
With initial static analysis out of the way, we can set

the file as executable and do some dynamic analysis.
$ chmod +x qualification .out
$./ qualification .out
$./ qualification .out test

$./ qualification .out shhimhiding

Running the binary with and without arguments (even
the flag found via strings) yields no “goodboy” message.
To investigate further, we start GHIDRA 9.0 to begin
our analysis. We create a new GHIDRA project and
load the binary into it. We open the CodeBrowser tool
and perform auto-analysis. The first step in solving this
challenge was to look at the main function. This is a simple
function that checks if exactly 2 arguments were passed to
the program, then calls challengeFunction that takes a
char* as it’s only parameter. Ghidra outputs the following
for challengeFunction.

void challengeFunction (char * param_1)
{

bool bVar1;
int local_2c ;
uint local_28 [4];
undefined4 local_18 ;
undefined4 local_14 ;
undefined4 local_10 ;
undefined4 local_c ;

local_28 [0] = 1;
local_28 [1] = 2;
local_28 [2] = 1;
local_28 [3] = 2;
local_18 = 1;
local_14 = 2;
local_10 = 1;
local_c = 2;
bVar1 = true;
local_2c = 0;
while (local_2c < 8) {

if (((int) param_1 [(long) local_2c] -
0x30U ^ 3) !=
local_28 [(long) local_2c]) {

bVar1 = false;
}
local_2c = local_2c + 1;

}
if (bVar1) {

puts("Great Job! The flag is what
you entered ");

}
return ;

}

After all the definitions and initialization, the impor-
tant part of this function is in the while loop. The loop
iterates through each of the first 8 chars of the input,
applies a simple transformation, then compares it to the
corresponding indices of the array, local_28. If each com-
parison is true, the function prints out a success message.
Otherwise, it exits. In order to figure out what input was
required, we worked backwards from the local variable.
The first 4 numbers in the array are 1, 2, 1, and 2, which
are explicitly assigned to the first 4 indices of local_28.
Because the array is only allocated with a size of 4, the
last 4 comparisons in the while loop run off the end of
the array. Space for local variables is allocated on the
stack, so the 4 memory spaces immediately after local_28

are the next 4 local variables allocated, namely local_18,
local_14, local_10, and local_c, with values 1, 2, 1, and 2,
respectively. So, after applying the transformation on the
input, the first 8 chars must be equal to 1, 2, 1, 2, 1, 2, 1,
and 2. The last step is to reverse the transformation, which
consists of subtracting the hex value 30, the XORing with
3. The XOR operation turns a 1 into a 2, and a 2 into
a 1. Adding 0x30 gives the numerical value of our input
as 0x32, 0x31, 0x32, 0x31, 0x32, 0x31, 0x32, and 0x31.
Consulting an ASCII table gives the char value for this
sequence as "21212121". Running the program with that
argument prints out the success message.
Based off of our reverse engineering, we can rename

variables and change types to the following:
void challengeFunction (char *flag) {

int i;
uint table [8];
bool goodFlag ;

table [0] = 1;
table [1] = 2;
table [2] = 1;
table [3] = 2;
table [4] = 1;
table [5] = 2;
table [6] = 1;
table [7] = 2;
goodFlag = true;
i = 0;

while (i < 8) {
if (((int)flag [(long)i] - 0x30U ^ 3)

!= table [(long)i]) {
goodFlag = false;

}
i += 1;

}
if (goodFlag) {

puts("Great Job! The flag is what
you entered ");

}
return ;

}

A. A deeper look at the assembly
In order to understand how to reach the code that puts

the affirmative message, it is important to understand how
to prevent goodFlag from being set to False. As goodFlag
is initialized to true, it is necessary to avoid the conditional
passing. To better understand this code, we looked at this
region as x86 assembly.
1 LAB_0040057e XREF [1]:

0 x4005b6 (j)
2 0 x40057e 8b45dc MOV EAX , dword ptr

[RBP + local_2c]
3 0 x400581 4863 d0 MOVSXD RDX , EAX
4 0 x400584 488 b45c8 MOV RAX , qword ptr

[RBP + local_40]
5 0 x400588 4801 d0 ADD RAX , RDX
6 0 x40058b 0fb600 MOVZX EAX , byte ptr

[RAX]

2

7 0 x40058e 8845 db MOV byte ptr [RBP
+ local_2d], AL

8 0 x400591 0 fbe45db MOVSX EAX , byte ptr
[RBP + local_2d]

9 0 x400595 83 e830 SUB EAX , 0x30
10 0 x400598 83 f003 XOR EAX , 0x3
11 0 x40059b 89c2 MOV EDX , EAX
12 0 x40059d 8b45dc MOV EAX , dword ptr

[RBP + local_2c]
13 0 x4005a0 4898 CDQE
14 0 x4005a2 8 b4485e0 MOV EAX , dword ptr

[RBP + RAX *0x4 + -0x20]
15 0 x4005a6 39c2 CMP EDX , EAX
16 0 x4005a8 7404 JZ LAB_004005ae
17 0 x4005aa c645da00 MOV byte ptr [RBP

+ local_2e], 0x0

In this assembly, RBP + local_2c holds the value
of i that increments from 0 to 8. Additionally, RBP +
local_40 holds the parameter that is passed to this
challengeFunction, and this is the argument to the pro-
gram itself. When RAX and RDX are added at 0x400588,
this is used to create a pointer to the i’th character of the
string, and this character is moved into EAX and RBP +
local_2d. After 0x30 is subtracted from this value, it is
xored with 0x3. 0x30 is notable because this is the ascii
value for the character ’0’, so subtracting 0x30 from any
character of a one digit integer would retrieve it’s value.

The incrementing value i is moved into EAX again at
0x4005a0, and this time it is multiplied by 0x4 and added
to RBP - 0x20. This is where the array of 0’s and 1’s is
stored, and this is statically created at the beginning of the
function. When these are compared, execution will jump
to 004005ae if they are equal, and 0 is moved into RBP
+ local_2e if not. This local variable holds the boolean
that we need to remain 1. Luckily, xor is a reversible
operation, and addition is as well. 1 xored with 3 is 2,
and 2 + 0x30 is 0x32. This is the character ’2’ in ASCII.
2 xored with 3 is 1, and 1 + 0x30 is 0x31, or ’1’ in ASCII.
Since we know the order in which the values of 1 and 2
are assigned into the static array, we can determine that
the argument to give the program is 21212121. Running
./qualification.out with the argument of 21212121
gives the affirmative message.

Further investigation of the functions discovered by
GHIDRA, we notice one named secretFunction.

void secretFunction (void) {
puts("The flag is <<shhimhiding >>");
return ;

}

This function is never referenced by the main or
challengeFunction, but it was easily discovered through
static analysis (GNU strings also revealed the other flag
string.

III. Conclusion
In this qualifier we used GHIDRA to reverse engineer

an unknown binary file to understand how to provide the
correct flag and discover any other interesting features.

We recovered the correct flag of “21212121” and noticed
the false, hidden flag of “shhimhiding”. With the necessary
background in reverse engineering we are prepared to
tackle the firmware analysis and exploitation of the RFID
platform.

3

	Introduction
	Challenge
	A deeper look at the assembly

	Conclusion

