forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common.hpp
196 lines (170 loc) · 6.89 KB
/
common.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include <fstream>
#include <map>
#include <sstream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "NvInfer.h"
#include "yololayer.h"
#include "mish.h"
using namespace nvinfer1;
cv::Mat preprocess_img(cv::Mat& img) {
int w, h, x, y;
float r_w = Yolo::INPUT_W / (img.cols*1.0);
float r_h = Yolo::INPUT_H / (img.rows*1.0);
if (r_h > r_w) {
w = Yolo::INPUT_W;
h = r_w * img.rows;
x = 0;
y = (Yolo::INPUT_H - h) / 2;
} else {
w = r_h* img.cols;
h = Yolo::INPUT_H;
x = (Yolo::INPUT_W - w) / 2;
y = 0;
}
cv::Mat re(h, w, CV_8UC3);
cv::resize(img, re, re.size());
cv::Mat out(Yolo::INPUT_H, Yolo::INPUT_W, CV_8UC3, cv::Scalar(128, 128, 128));
re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
return out;
}
cv::Rect get_rect(cv::Mat& img, float bbox[4]) {
int l, r, t, b;
float r_w = Yolo::INPUT_W / (img.cols * 1.0);
float r_h = Yolo::INPUT_H / (img.rows * 1.0);
if (r_h > r_w) {
l = bbox[0] - bbox[2]/2.f;
r = bbox[0] + bbox[2]/2.f;
t = bbox[1] - bbox[3]/2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
b = bbox[1] + bbox[3]/2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
l = l / r_w;
r = r / r_w;
t = t / r_w;
b = b / r_w;
} else {
l = bbox[0] - bbox[2]/2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
r = bbox[0] + bbox[2]/2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
t = bbox[1] - bbox[3]/2.f;
b = bbox[1] + bbox[3]/2.f;
l = l / r_h;
r = r / r_h;
t = t / r_h;
b = b / r_h;
}
return cv::Rect(l, t, r-l, b-t);
}
float iou(float lbox[4], float rbox[4]) {
float interBox[] = {
std::max(lbox[0] - lbox[2]/2.f , rbox[0] - rbox[2]/2.f), //left
std::min(lbox[0] + lbox[2]/2.f , rbox[0] + rbox[2]/2.f), //right
std::max(lbox[1] - lbox[3]/2.f , rbox[1] - rbox[3]/2.f), //top
std::min(lbox[1] + lbox[3]/2.f , rbox[1] + rbox[3]/2.f), //bottom
};
if(interBox[2] > interBox[3] || interBox[0] > interBox[1])
return 0.0f;
float interBoxS =(interBox[1]-interBox[0])*(interBox[3]-interBox[2]);
return interBoxS/(lbox[2]*lbox[3] + rbox[2]*rbox[3] -interBoxS);
}
bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) {
return a.det_confidence > b.det_confidence;
}
void nms(std::vector<Yolo::Detection>& res, float *output, float conf_thresh, float nms_thresh = 0.5) {
int det_size = sizeof(Yolo::Detection) / sizeof(float);
std::map<float, std::vector<Yolo::Detection>> m;
for (int i = 0; i < output[0] && i < Yolo::MAX_OUTPUT_BBOX_COUNT; i++) {
if (output[1 + det_size * i + 4] <= conf_thresh) continue;
Yolo::Detection det;
memcpy(&det, &output[1 + det_size * i], det_size * sizeof(float));
if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector<Yolo::Detection>());
m[det.class_id].push_back(det);
}
for (auto it = m.begin(); it != m.end(); it++) {
//std::cout << it->second[0].class_id << " --- " << std::endl;
auto& dets = it->second;
std::sort(dets.begin(), dets.end(), cmp);
for (size_t m = 0; m < dets.size(); ++m) {
auto& item = dets[m];
res.push_back(item);
for (size_t n = m + 1; n < dets.size(); ++n) {
if (iou(item.bbox, dets[n].bbox) > nms_thresh) {
dets.erase(dets.begin()+n);
--n;
}
}
}
}
}
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
ILayer* convBnMish(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, int linx) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap["module_list." + std::to_string(linx) + ".Conv2d.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "module_list." + std::to_string(linx) + ".BatchNorm2d", 1e-4);
auto creator = getPluginRegistry()->getPluginCreator("Mish_TRT", "1");
const PluginFieldCollection* pluginData = creator->getFieldNames();
IPluginV2 *pluginObj = creator->createPlugin(("mish" + std::to_string(linx)).c_str(), pluginData);
ITensor* inputTensors[] = {bn1->getOutput(0)};
auto mish = network->addPluginV2(&inputTensors[0], 1, *pluginObj);
return mish;
}