Skip to content

Latest commit

 

History

History
124 lines (79 loc) · 3.91 KB

README.md

File metadata and controls

124 lines (79 loc) · 3.91 KB

Image Captioning

A Django App for image captioning (PyTorch)

Live Demo

It may take seconds to generate caption, please be patient :)

看图说话 (img-captioning.herokuapp.com)

Demo

Install

  1. Download project

    git clone https://github.com/umnooob/img_captioning.git
    cd ./img_captioning
  2. Set up environment

    conda create -n <env_name>
    pip install -r requirements
  3. Copy all static files from STATICFILES_DIRS to STATIC_ROOT

    python manage.py collectstatic
  4. Start Django project

    python manage.py runserver
  5. You will see our Image Captioning App in http://127.0.0.1:8000/

Deployment on Heroku

Git-based deployment

You can refer to this blog for detailed instructions. Since our deployment will exceed maximum slug size of 500MB , we will use Docker-based Deployment.

If your employment doesn't exceed 500MB and your model params file exceed 200MB, you can use git lfs and this Heroku Buildpack for simple git-based deployment.

Docker-based Deployment(Ours)

you can find more information in Dockerfile. Since I'm new to docker, the docker image may be redundent and relatively big. PRs are welcome.

Reference

Local Test

  1. Install docker

  2. build image and spin up a container named <container_name> which is up to you.

docker build -t web:latest .
docker run -d --name <container_name> -e "PORT=8765" -e "DEBUG=1" -p 8007:8765 web:latest
  1. You can see App in http://localhost:8007

  2. Remove the running container

    docker stop <container_name>
    docker rm <container_name>

Heroku Deployment Using Container Registry

  1. Sign up for Heroku account, and then install the Heroku CLI .

  2. create a new app in Heroku

  3. set secret key for Django in Heroku

    heroku config:set DJANGO_SECRET_KEY=<SOME_SECRET_VALUE> -a <your_app_name>
  4. add Heroku url to ALLOWED_HOSTS in ./pytorch_django/setting.py

    ALLOWED_HOSTS = ['<your_app_name>.herokuapp.com']
  5. Login, build docker image, Push docker image and release(it may take minutes to push image)

    heroku login -i
    heroku container:login 
    docker build -t registry.heroku.com/<your_app_name>/web .
    docker push registry.heroku.com/<your_app_name>/web
    heroku container:release -a <your_app_name> web
  6. Finally, you can view your app running in Heroku https://APP_NAME.herokuapp.com

Model

paper:"Show and Tell: A Neural Image Caption Generator" by Vinayls et al. (ICML2015)

Use ResNet-152 to encode a 224*224 RGB picture as a 256-dim embedding, then use a LSTM model to decode. Origin model was trained in MSCOCO dataset.

You can modify models by changing image/image_captioning/models.py as well as image_captioning.py. Model parameters can be found in static/* .