-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
research_assistant.py
195 lines (157 loc) · 5.8 KB
/
research_assistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Make sure to install the required packageschainlit and groq
import os, time
from openai import AsyncOpenAI
import chainlit as cl
import re
import requests
from io import BytesIO
from chainlit.element import ElementBased
from groq import Groq
# Import threadpools to run the crawl_url function in a separate thread
from concurrent.futures import ThreadPoolExecutor
client = AsyncOpenAI(base_url="https://api.groq.com/openai/v1", api_key=os.getenv("GROQ_API_KEY"))
# Instrument the OpenAI client
cl.instrument_openai()
settings = {
"model": "llama3-8b-8192",
"temperature": 0.5,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
def extract_urls(text):
url_pattern = re.compile(r'(https?://\S+)')
return url_pattern.findall(text)
def crawl_url(url):
data = {
"urls": [url],
"include_raw_html": True,
"word_count_threshold": 10,
"extraction_strategy": "NoExtractionStrategy",
"chunking_strategy": "RegexChunking"
}
response = requests.post("https://crawl4ai.com/crawl", json=data)
response_data = response.json()
response_data = response_data['results'][0]
return response_data['markdown']
@cl.on_chat_start
async def on_chat_start():
cl.user_session.set("session", {
"history": [],
"context": {}
})
await cl.Message(
content="Welcome to the chat! How can I assist you today?"
).send()
@cl.on_message
async def on_message(message: cl.Message):
user_session = cl.user_session.get("session")
# Extract URLs from the user's message
urls = extract_urls(message.content)
futures = []
with ThreadPoolExecutor() as executor:
for url in urls:
futures.append(executor.submit(crawl_url, url))
results = [future.result() for future in futures]
for url, result in zip(urls, results):
ref_number = f"REF_{len(user_session['context']) + 1}"
user_session["context"][ref_number] = {
"url": url,
"content": result
}
user_session["history"].append({
"role": "user",
"content": message.content
})
# Create a system message that includes the context
context_messages = [
f'<appendix ref="{ref}">\n{data["content"]}\n</appendix>'
for ref, data in user_session["context"].items()
]
if context_messages:
system_message = {
"role": "system",
"content": (
"You are a helpful bot. Use the following context for answering questions. "
"Refer to the sources using the REF number in square brackets, e.g., [1], only if the source is given in the appendices below.\n\n"
"If the question requires any information from the provided appendices or context, refer to the sources. "
"If not, there is no need to add a references section. "
"At the end of your response, provide a reference section listing the URLs and their REF numbers only if sources from the appendices were used.\n\n"
"\n\n".join(context_messages)
)
}
else:
system_message = {
"role": "system",
"content": "You are a helpful assistant."
}
msg = cl.Message(content="")
await msg.send()
# Get response from the LLM
stream = await client.chat.completions.create(
messages=[
system_message,
*user_session["history"]
],
stream=True,
**settings
)
assistant_response = ""
async for part in stream:
if token := part.choices[0].delta.content:
assistant_response += token
await msg.stream_token(token)
# Add assistant message to the history
user_session["history"].append({
"role": "assistant",
"content": assistant_response
})
await msg.update()
# Append the reference section to the assistant's response
reference_section = "\n\nReferences:\n"
for ref, data in user_session["context"].items():
reference_section += f"[{ref.split('_')[1]}]: {data['url']}\n"
msg.content += reference_section
await msg.update()
@cl.on_audio_chunk
async def on_audio_chunk(chunk: cl.AudioChunk):
if chunk.isStart:
buffer = BytesIO()
# This is required for whisper to recognize the file type
buffer.name = f"input_audio.{chunk.mimeType.split('/')[1]}"
# Initialize the session for a new audio stream
cl.user_session.set("audio_buffer", buffer)
cl.user_session.set("audio_mime_type", chunk.mimeType)
# Write the chunks to a buffer and transcribe the whole audio at the end
cl.user_session.get("audio_buffer").write(chunk.data)
pass
@cl.step(type="tool")
async def speech_to_text(audio_file):
cli = Groq()
response = await client.audio.transcriptions.create(
model="whisper-large-v3", file=audio_file
)
return response.text
@cl.on_audio_end
async def on_audio_end(elements: list[ElementBased]):
# Get the audio buffer from the session
audio_buffer: BytesIO = cl.user_session.get("audio_buffer")
audio_buffer.seek(0) # Move the file pointer to the beginning
audio_file = audio_buffer.read()
audio_mime_type: str = cl.user_session.get("audio_mime_type")
start_time = time.time()
whisper_input = (audio_buffer.name, audio_file, audio_mime_type)
transcription = await speech_to_text(whisper_input)
end_time = time.time()
print(f"Transcription took {end_time - start_time} seconds")
user_msg = cl.Message(
author="You",
type="user_message",
content=transcription
)
await user_msg.send()
await on_message(user_msg)
if __name__ == "__main__":
from chainlit.cli import run_chainlit
run_chainlit(__file__)