-
Notifications
You must be signed in to change notification settings - Fork 13
/
Sliding Window Search.py
264 lines (225 loc) · 11.9 KB
/
Sliding Window Search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# Assuming you have created a warped binary image called "binary_warped"
binary_warped = warped
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[int(binary_warped.shape[0]/2):,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 58
# Set minimum number of pixels found to recenter window
minpix = 65
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),
(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),
(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Visualization Finding the lines
# Generate x and y values for plotting
ploty = np.linspace(0, warped.shape[0]-1, warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.show()
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
y_eval = np.max(ploty)
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Now our radius of curvature is in meters
print(left_curverad, 'm', right_curverad, 'm')
# Example values: 632.1 m 626.2 m
# Skip the sliding window search once you know where the lines are.
# In the next frame of video, you can just search in a margin around the previous line position.
# Assume you now have a new warped binary image
# from the next frame of video (also called "binary_warped")
# It's now much easier to find line pixels!
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) +
left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) +
right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Visualization
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin,
ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin,
ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
plt.imshow(result)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
#######################################
# Sliding Window Search - Convolution #
#######################################
# Read in a thresholded image
warped = mpimg.imread('warped_example.jpg')
# window settings
window_width = 50
window_height = 80 # Break image into 9 vertical layers since image height is 720
margin = 100 # How much to slide left and right for searching
def window_mask(width, height, img_ref, center, level):
output = np.zeros_like(img_ref)
output[int(img_ref.shape[0] - (level + 1) * height):int(img_ref.shape[0] - level * height),
max(0, int(center - width / 2)):min(int(center + width / 2), img_ref.shape[1])] = 1
return output
def find_window_centroids(image, window_width, window_height, margin):
window_centroids = [] # Store the (left,right) window centroid positions per level
window = np.ones(window_width) # Create our window template that we will use for convolutions
# First find the two starting positions for the left and right lane by using np.sum to get the vertical image slice
# and then np.convolve the vertical image slice with the window template
# Sum quarter bottom of image to get slice, could use a different ratio
l_sum = np.sum(warped[int(3 * warped.shape[0] / 4):, :int(warped.shape[1] / 2)], axis=0)
l_center = np.argmax(np.convolve(window, l_sum)) - window_width / 2
r_sum = np.sum(warped[int(3 * warped.shape[0] / 4):, int(warped.shape[1] / 2):], axis=0)
r_center = np.argmax(np.convolve(window, r_sum)) - window_width / 2 + int(warped.shape[1] / 2)
# Add what we found for the first layer
window_centroids.append((l_center, r_center))
# Go through each layer looking for max pixel locations
for level in range(1, (int)(warped.shape[0] / window_height)):
# convolve the window into the vertical slice of the image
image_layer = np.sum(
warped[int(warped.shape[0] - (level + 1) * window_height):int(warped.shape[0] - level * window_height), :],
axis=0)
conv_signal = np.convolve(window, image_layer)
# Find the best left centroid by using past left center as a reference
# Use window_width/2 as offset because convolution signal reference is at right side of window, not center of window
offset = window_width / 2
l_min_index = int(max(l_center + offset - margin, 0))
l_max_index = int(min(l_center + offset + margin, warped.shape[1]))
l_center = np.argmax(conv_signal[l_min_index:l_max_index]) + l_min_index - offset
# Find the best right centroid by using past right center as a reference
r_min_index = int(max(r_center + offset - margin, 0))
r_max_index = int(min(r_center + offset + margin, warped.shape[1]))
r_center = np.argmax(conv_signal[r_min_index:r_max_index]) + r_min_index - offset
# Add what we found for that layer
window_centroids.append((l_center, r_center))
return window_centroids
window_centroids = find_window_centroids(warped, window_width, window_height, margin)
# If we found any window centers
if len(window_centroids) > 0:
# Points used to draw all the left and right windows
l_points = np.zeros_like(warped)
r_points = np.zeros_like(warped)
# Go through each level and draw the windows
for level in range(0, len(window_centroids)):
# Window_mask is a function to draw window areas
l_mask = window_mask(window_width, window_height, warped, window_centroids[level][0], level)
r_mask = window_mask(window_width, window_height, warped, window_centroids[level][1], level)
# Add graphic points from window mask here to total pixels found
l_points[(l_points == 255) | ((l_mask == 1))] = 255
r_points[(r_points == 255) | ((r_mask == 1))] = 255
# Draw the results
template = np.array(r_points + l_points, np.uint8) # add both left and right window pixels together
zero_channel = np.zeros_like(template) # create a zero color channel
template = np.array(cv2.merge((zero_channel, template, zero_channel)), np.uint8) # make window pixels green
warpage = np.array(cv2.merge((warped*255, warped*255, warped*255)),
np.uint8) # making the original road pixels 3 color channels
output = cv2.addWeighted(warpage, 1, template, 0.5, 0.0) # overlay the orignal road image with window results
# If no window centers found, just display orginal road image
else:
output = np.array(cv2.merge((warped, warped, warped)), np.uint8)
# Display the final results
plt.imshow(output)
plt.title('window fitting results')
plt.show()