Simple mapping and reduce operations with java 8 and scala 2.11. Simple streaming from socket. kafka streaming.
we need to create a socket and start Java application.
nc -lk 9999
- We need to start up a kafka broker
docker run -d -p 2181:2181 -p 9092:9092 --env ADVERTISED_HOST=localhost --env ADVERTISED_PORT=9092 -v /DIR_TO_LOCAL_FILES:/data --name local-kafka spotify/kafka
- Enter into kafka machine
docker exec -it local-kafka bash
- Some commands to execute kafka options
/opt/kafka_2.11-0.10.1.0/bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic spark
/opt/kafka_2.11-0.10.1.0/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic spark
- Kafka with messages by batches
/opt/kafka_2.11-0.10.1.0/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic spark < FILE_WITH_MESSAGES
- Download hbase from official site.
- Start hbase with script, you must be sure that there isn't another process listen to port 2181
./bin/start-hbase.sh
- Start hbase shell
./bin/hbase shell
- Usefully commands for hbase shell
create 'my-table',family1:column1,...,family[n]:column[n]
scan 'my-table', {FILTER => "SingleColumnValueFilter('family','column',=,'binary:value')"}
- Initial set up for this example
create 'words', 'word', 'count', 'date'