You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Which gave me lots of output. Put the CPU on 100%, and I've been waiting to see training steps for an hour now, but training does not seem to start.
Is there a reason for it to be frozen?
(Not only I don't see steps in the terminal, the TensorBoard is empty as well)
2019-07-25 17:44:59.211092: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0 2019-07-25 17:44:59.213841: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0 2019-07-25 17:44:59.216295: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0 2019-07-25 17:44:59.216873: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0 2019-07-25 17:44:59.220049: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0 2019-07-25 17:44:59.222446: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0 2019-07-25 17:44:59.269580: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7 2019-07-25 17:44:59.288028: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0, 1, 2, 3 2019-07-25 17:44:59.288551: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2019-07-25 17:44:59.907510: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x555ff98ec9f0 executing computations on platform CUDA. Devices: 2019-07-25 17:44:59.907590: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1 2019-07-25 17:44:59.907617: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (1): GeForce GTX 1080 Ti, Compute Capability 6.1 2019-07-25 17:44:59.907637: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (2): GeForce GTX 1080 Ti, Compute Capability 6.1 2019-07-25 17:44:59.907657: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (3): GeForce GTX 1080 Ti, Compute Capability 6.1 2019-07-25 17:44:59.913152: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2200045000 Hz 2019-07-25 17:44:59.919999: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x555ff819b190 executing computations on platform Host. Devices: 2019-07-25 17:44:59.920055: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): , 2019-07-25 17:44:59.926804: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62 pciBusID: 0000:02:00.0 2019-07-25 17:44:59.929084: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 1 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62 pciBusID: 0000:03:00.0 2019-07-25 17:44:59.931260: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 2 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62 pciBusID: 0000:81:00.0 2019-07-25 17:44:59.933309: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 3 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62 pciBusID: 0000:82:00.0 2019-07-25 17:44:59.933387: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0 2019-07-25 17:44:59.933422: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0 2019-07-25 17:44:59.933451: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0 2019-07-25 17:44:59.933480: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0 2019-07-25 17:44:59.933509: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0 2019-07-25 17:44:59.933537: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0 2019-07-25 17:44:59.933567: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7 2019-07-25 17:44:59.949195: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0, 1, 2, 3 2019-07-25 17:44:59.949264: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0 2019-07-25 17:44:59.957493: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-07-25 17:44:59.957530: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0 1 2 3 2019-07-25 17:44:59.957555: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N Y N N 2019-07-25 17:44:59.957596: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 1: Y N N N 2019-07-25 17:44:59.957611: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 2: N N N Y 2019-07-25 17:44:59.957626: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 3: N N Y N 2019-07-25 17:44:59.966648: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10064 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1) 2019-07-25 17:44:59.969143: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10481 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0, compute capability: 6.1) 2019-07-25 17:44:59.971469: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:2 with 10481 MB memory) -> physical GPU (device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:81:00.0, compute capability: 6.1) 2019-07-25 17:44:59.974262: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:3 with 10481 MB memory) -> physical GPU (device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:82:00.0, compute capability: 6.1) 2019-07-25 17:45:02.640893: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU. To confirm that XLA is active, pass --vmodule=xla_compilation_c ache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile. W0725 17:45:03.616461 139655837968192 deprecation.py:323] From train.py:83: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the tf.data module.
--
The text was updated successfully, but these errors were encountered:
I ran:
Which gave me lots of output. Put the CPU on 100%, and I've been waiting to see training steps for an hour now, but training does not seem to start.
Is there a reason for it to be frozen?
(Not only I don't see steps in the terminal, the TensorBoard is empty as well)
The text was updated successfully, but these errors were encountered: