-
Notifications
You must be signed in to change notification settings - Fork 6
/
app_helper.py
49 lines (40 loc) · 1.26 KB
/
app_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from sklearn.linear_model import LinearRegression
import datetime
import ast
def valid_time(a):
delta = datetime.datetime.now() - a
mini = delta.total_seconds()/60
if mini >= 5:
return False # pragma: no cover
return True
def pre(delta, r):
with open('demoResponse.txt', 'r') as values:
data = ast.literal_eval(values.read())
X = []
Y = []
pos = False
if r > 0.5:
# triggered only when news articles are negative
pos = True # pragma: no cover
for i, _ in enumerate(data):
if pos and data[i][0] >= 0.5:
X.append(round(data[i][0], 5)) # pragma: no cover
else:
X.append(round(data[i][0], 5))
X = np.array(X).reshape(-1, 1)
if delta == 1:
for i, _ in enumerate(data):
Y.append(round(data[i][1], 5))
elif delta == 7:
for i, _ in enumerate(data):
Y.append(round(data[i][2], 5))
elif delta == 15:
for i, _ in enumerate(data):
Y.append(round(data[i][3], 5))
elif delta == 30:
for i, _ in enumerate(data):
Y.append(round(data[i][4], 5))
reg = LinearRegression()
classi = reg.fit(X, Y)
return classi.predict(np.array(r).reshape(1, -1)).tolist()[0]*100