-
Notifications
You must be signed in to change notification settings - Fork 10
/
betas_ibov.r
225 lines (154 loc) · 6.53 KB
/
betas_ibov.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
library(ggplot2)
library(readr)
library(dplyr)
library(corrplot)
library(plotly)
library(outliers)
library(data.table)
library(zoo)
path = "..."
setwd(path)
oname = list.files(path=getwd())
numfiles = length(oname)
Adjcloses = read.csv("BBAS3.csv")[1]
for(i in c(1:numfiles))
{
name = substr(oname[i],length(oname[i]),length(oname[i])+4)
temp = assign(name, read.csv(oname[i],
col.names = c("Date", "Open", "High", "Low", "Close",
paste(name),"Volume"), na.strings=c("","null")
))
Adjcloses = merge(Adjcloses,temp[,c(1,6)],by="Date",all = TRUE)
}
Adjcloses$Date1 = as.Date(Adjcloses$Date, format = "%Y-%m-%d")
aa = na.omit(Adjcloses)
Adjcloses[ Adjcloses==0 ] = NA
sapply(Adjcloses, function(x) sum(is.na(x)))
# Removendo colunas com missings
Adjcloses$CGRA3 = NULL
Adjcloses$SANB1 = NULL
Adjcloses$UGPA3 = NULL
Adjcloses$ESTC3 = NULL
# Função para preencher NAs com forward filling
replaceNaWithLatest <- function( dfIn, nameColsNa = names(dfIn) ){
dtTest <- data.table(dfIn)
invisible(lapply(nameColsNa,
function(nameColNa){
setnames(dtTest, nameColNa, "colNa")
dtTest[, segment := cumsum(!is.na(colNa))]
dtTest[, colNa := colNa[1], by = "segment"]
dtTest[, segment := NULL]
setnames(dtTest, "colNa", nameColNa)
}))
return(dtTest)
}
replaced = replaceNaWithLatest(Adjcloses)
sapply(replaced, function(x) sum(is.na(x)))
replaced2 = na.locf(replaced, fromLast = TRUE)
sapply(replaced2, function(x) sum(is.na(x)))
Adjcloses_new = data.frame(sapply(replaced2, function(x) as.numeric(x)))
Adjcloses1 = Adjcloses_new[,-c(1,(length(Adjcloses_new)))]
# Normalizando dados
nova = data.frame(lapply(Adjcloses1,function(x) x/x[1]))
nova$Date = replaced2$Date1
nova = na.omit(nova)
nova2 = nova[,-60]
# Daily returns
daily = sapply(nova2,function(x) (diff(x)/x[-length(x)]))
# Cumulative returns
cumulative = apply(nova2,2,function(x) ((x/x[1]) - 1) )
totalvar = cbind(cumulative, nova$Date)
totalvarts <- ts(totalvar)
plot.ts(totalvarts[,c(51:59)])
# Vamos remover outliers que podem ter sido gerados quando calculamos os retornos
daily <- data.frame(daily)
daily <- rm.outlier(daily)
daily$TUPY3 = NULL
daily$TIMP3 = NULL
# =======================================================================
# Vamos remover outliers que podem ter sido gerados quando calculamos os retornos
daily <- data.frame(daily)
daily2 <- rm.outlier(daily)
# =======================================================================================================================
# Scatter plots
# Plotting functions
lm_eqn <- function(df,i,j){
y = df[,colnames(df) %in% j]
x = df[,colnames(df) %in% i]
m <- lm(y ~ x, df);
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,
list(a = format(coef(m)[1], digits = 2),
b = format(coef(m)[2], digits = 2),
r2 = format(summary(m)$r.squared, digits = 3)))
as.character(as.expression(eq));
}
# ==================================================
# Array com nomes das ações
stocks = colnames(daily[,!colnames(daily) %in% "IBOV."])
vetor = list(0,0,0)
matriz = data.frame(alfa = vetor[[1]], beta = vetor[[2]], r_squared = vetor[[3]])
# Criação das equações
for(i in c(1:length(stocks)))
{
y = daily[,colnames(daily) %in% stocks[i]]
x = daily[,colnames(daily) %in% "IBOV."]
m = lm(y ~ x, daily)
a = m$coefficients[1][1]
b = m$coefficients[2][1]
c = summary(m)
c = c$r.squared
matriz_temp = data.frame(alfa = a, beta = b, r_squared = c)
rownames(matriz_temp) = stocks[i]
matriz = rbind(matriz,matriz_temp)
}
# ==================================================
# Loop para salvar as figuras
setwd("C:/Users/victo/Blog/Post 09/Figuras/Corrigidas")
for(i in c(1:length(stocks)))
{
y = daily[,colnames(daily) %in% stocks[i]]
x = daily[,colnames(daily) %in% "IBOV."]
m = lm(y ~ x, daily)
a = stocks[i]
a = paste(a, "vs IBOV")
png(filename=paste(a,".png"))
plot(x,y,ylab = paste("Retornos - " ,stocks[i]),xlab = "IBOV")
abline(m)
mtext(bquote( y == .(m$coefficients[2]) * x + .(m$coefficients[1])), side=3, line=0)
dev.off()
}
# ====================================================================================================
# Criando base para carteiras especificadas e plotando gráficos
# ==========================
# Construindo carteiras
carteira1 = (nova$PETR4 + nova$ITUB4 + nova$CYRE3 + nova$BBAS3 + nova$USIM5
+ nova$GOAU4 + nova$ELET3 + nova$BRML3 + nova$DTEX3 + nova$GGBR4)/10
carteira2 = (0.16*nova$PETR4 + 0.14*nova$ITUB4 + 0.13*nova$CYRE3 + 0.12*nova$BBAS3 + 0.1*nova$USIM5
+ 0.09*nova$GOAU4 + 0.08*nova$ELET3 + 0.07*nova$BRML3 + 0.06*nova$DTEX3 + 0.05*nova$GGBR4)/1
carteira3 = (nova$PETR4 + nova$ITUB4 + nova$CYRE3 + nova$BBAS3 + nova$USIM5)/5
carteira4 = (0.25*nova$PETR4 + 0.225*nova$ITUB4 + 0.2*nova$CYRE3 + 0.175*nova$BBAS3 + 0.15*nova$USIM5)/1
#carteira4 = (0.075*nova$PETR4 + 0.6*nova$ITUB4 + 0.1*nova$CYRE3 + 0.175*nova$BBAS3 + 0.05*nova$USIM5)/1
carteira5 = (0.25*nova$ABEV3 + 0.225*nova$EQTL3 + 0.2*nova$LREN3 + 0.175*nova$CIEL3 + 0.15*nova$RADL3)/1
carteiras = data.frame(nova$Date,
indice1 = carteira1,
indice2 = carteira2,
indice3 = carteira3,
indice4 = carteira4,
indice5 = nova$IBOV.,
indice6 = carteira5,
itau = nova$ITUB4)
carteiras$nova.Date <- as.Date(carteiras$nova.Date, format = "%Y-%m-%d")
#carteiras_time <- ts(carteiras)
#plot.ts(carteiras_time)
a <- ggplot() +
geom_line(data = carteiras, aes(x = nova.Date, y = indice1, color = "Carteira 1"),size=0.72) +
geom_line(data = carteiras, aes(x = nova.Date, y = indice2, color = "Carteira 2"),size=0.72) +
geom_line(data = carteiras, aes(x = nova.Date, y = indice3, color = "Carteira 3"),size=0.72) +
geom_line(data = carteiras, aes(x = nova.Date, y = indice4, color = "Carteira 4"),size=0.72) +
geom_line(data = carteiras, aes(x = nova.Date, y = indice5, color = "IBOV"),size=0.72) +
#geom_line(data = carteiras, aes(x = nova.Date, y = indice6, color = "Carteira média/DP"),size=0.72) +
#geom_line(data = carteiras, aes(x = nova.Date, y = itau, color = "ITUB4"),size=0.72) +
xlab('Data') +
ylab('Retorno')+ theme(text = element_text(size=15))
a$labels$colour <- "Carteiras"
print(a)