forked from hobincar/vtt-action-recognition
-
Notifications
You must be signed in to change notification settings - Fork 1
/
logger.py
99 lines (81 loc) · 3.5 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514
import os
import tempfile
import moviepy.editor as mpy
import numpy as np
import scipy.misc
from io import BytesIO
import tensorflow as tf
class Logger(object):
def __init__(self, log_dir, max_queue=10):
"""Create a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir, max_queue=max_queue)
def text(self, tag, text, step):
"""Log text."""
text_tensor = tf.make_tensor_proto(text, dtype=tf.string)
meta = tf.SummaryMetadata()
meta.plugin_data.plugin_name = "text"
summary = tf.Summary()
summary.value.add(tag=tag, metadata=meta, tensor=text_tensor)
self.writer.add_summary(summary, step)
def scalar(self, tag, value, step):
"""Log a scalar variable."""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
def image(self, tag, images, step):
"""Log a list of images."""
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
def gif(self, tag, images, step, fps=5):
""" Given a 4D numpy tensor of images, log as a gif. """
with tempfile.NamedTemporaryFile() as f: fname = f.name + '.gif'
clip = mpy.ImageSequenceClip(list(images), fps=fps)
clip.write_gif(fname, verbose=False, progress_bar=False)
with open(fname, 'rb') as f: enc_gif = f.read()
os.remove(fname)
# create a tensorflow image summary protobuf:
thwc = images.shape
im_summ = tf.Summary.Image()
im_summ.height = thwc[1]
im_summ.width = thwc[2]
im_summ.colorspace = 3 # fix to 3 == RGB
im_summ.encoded_image_string = enc_gif
# create a summary obj:
summary = tf.Summary()
summary.value.add(tag=tag, image=im_summ)
# summ_str = summ.SerializeToString()
self.writer.add_summary(summary, step)
def histo(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()