-
Notifications
You must be signed in to change notification settings - Fork 12
/
visualize_results.py
268 lines (222 loc) · 11.5 KB
/
visualize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import math
import h5py
import numpy as np
from numpy import matlib as npm
import tensorflow as tf
import socket
import importlib
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import tf_util
import helper
import transforms3d.euler as t3d
parser = argparse.ArgumentParser()
parser.add_argument('-weights','--model_path', type=str, default='log_multi_catg_noise/model300.ckpt', help='Path of the weights (.ckpt file) to be used for test')
parser.add_argument('-idx','--template_idx', type=int, default='log_multi_catg_noise/model300.ckpt', help='Template Idx')
parser.add_argument('--iterations', type=int, default=8, help='No of Iterations for Registration')
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='ipcr_model', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]')
parser.add_argument('--log_dir', default='log_test', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Number of Points in a Point Cloud [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=501, help='Epoch to run [default: 250]')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=3000000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
parser.add_argument('--centroid_sub', type=bool, default=True, help='Centroid Subtraction from Source and Template before Registration.')
parser.add_argument('--use_pretrained_model', type=bool, default=False, help='Use a pretrained model of airplane to initialize the training.')
parser.add_argument('--use_random_poses', type=bool, default=False, help='Use of random poses to train the model in each batch')
parser.add_argument('--data_dict', type=str, default='train_data',help='Templates data dictionary used for training')
parser.add_argument('--train_poses', type=str, default='itr_net_train_data45.csv', help='Poses for training')
parser.add_argument('--eval_poses', type=str, default='itr_net_eval_data45.csv', help='Poses for evaluation')
FLAGS = parser.parse_args()
TRAIN_POSES = FLAGS.train_poses
EVAL_POSES = FLAGS.eval_poses
BATCH_SIZE = 1
# Parameters for data
NUM_POINT = FLAGS.num_point
MAX_NUM_POINT = 2048
NUM_CLASSES = 40
centroid_subtraction_switch = FLAGS.centroid_sub
# Network hyperparameters
MAX_EPOCH = FLAGS.max_epoch
MAX_LOOPS = FLAGS.iterations
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
# Model Import
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
# Calculate Learning Rate during training.
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
# Get Batch Normalization decay.
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/cpu:0'):
batch = tf.Variable(0) # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
with tf.device('/gpu:'+str(GPU_INDEX)):
is_training_pl = tf.placeholder(tf.bool, shape=()) # Flag for dropouts.
bn_decay = get_bn_decay(batch) # Calculate BN decay.
learning_rate = get_learning_rate(batch) # Calculate Learning Rate at each step.
# Define a network to backpropagate the using final pose prediction.
with tf.variable_scope('Network') as _:
# Get the placeholders.
source_pointclouds_pl, template_pointclouds_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
# Extract Features.
source_global_feature, template_global_feature = MODEL.get_model(source_pointclouds_pl, template_pointclouds_pl, is_training_pl, bn_decay=bn_decay)
# Find the predicted transformation.
predicted_transformation = MODEL.get_pose(source_global_feature,template_global_feature,is_training_pl, bn_decay=bn_decay)
with tf.device('/cpu:0'):
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Init variables
init = tf.global_variables_initializer()
sess.run(init, {is_training_pl: True})
saver.restore(sess, FLAGS.model_path)
# Create a dictionary to pass the tensors and placeholders in train and eval function for Network.
ops = {'source_pointclouds_pl': source_pointclouds_pl,
'template_pointclouds_pl': template_pointclouds_pl,
'is_training_pl': is_training_pl,
'predicted_transformation': predicted_transformation,
'step': batch}
templates = helper.loadData(FLAGS.data_dict)
eval_poses = helper.read_poses(FLAGS.data_dict, EVAL_POSES) # Read all the poses data for evaluation.
# Just to test the results
test_one_epoch(sess, ops, templates, eval_poses, saver, FLAGS.model_path)
def test_one_epoch(sess, ops, templates, poses, saver, model_path):
# Arguments:
# sess: Tensorflow session to handle tensors.
# ops: Dictionary for tensors of Network
# templates: Training Point Cloud data.
# poses: Training pose data.
# saver: To restore the weights.
# model_path: Path of log directory.
saver.restore(sess, model_path) # Restore the weights of trained network.
is_training = False
display_ptClouds = False
display_poses = False
display_poses_in_itr = False
display_ptClouds_in_itr = False
swap_case = False
MAX_LOOPS = 4
template_data = np.zeros((BATCH_SIZE,MAX_NUM_POINT,3)) # Extract Templates for batch training.
template_data[0]=np.copy(templates[FLAGS.template_idx,:,:])
batch_euler_poses = poses[0].reshape((1,6)) # Extract poses for batch training.
# Define test case.
batch_euler_poses[0]=[0.4,0.5,0.1,10*(np.pi/180),20*(np.pi/180),20*(np.pi/180)]
source_data = helper.apply_transformation(template_data,batch_euler_poses) # Apply the poses on the templates to get source data.
# Chose Random Points from point clouds for training.
if np.random.random_sample()<0:
source_data = helper.select_random_points(source_data, NUM_POINT) # probability that source data has different points than template
else:
source_data = source_data[:,0:NUM_POINT,:]
# Add noise to source point cloud.
if np.random.random_sample()<1.0:
source_data = helper.add_noise(source_data)
# Only choose limited number of points from the source and template data.
source_data = source_data[:,0:NUM_POINT,:]
template_data = template_data[:,0:NUM_POINT,:]
TEMPLATE_DATA = np.copy(template_data) # Store the initial template to visualize results.
SOURCE_DATA = np.copy(source_data) # Store the initial source to visualize results.
# Subtract the Centroids from the Point Clouds.
if centroid_subtraction_switch:
source_data = source_data - np.mean(source_data, axis=1, keepdims=True)
template_data = template_data - np.mean(template_data, axis=1, keepdims=True)
# To visualize the source and point clouds:
if display_ptClouds:
helper.display_clouds_data(source_data[0])
helper.display_clouds_data(template_data[0])
TRANSFORMATIONS = np.identity(4) # Initialize identity transformation matrix.
TRANSFORMATIONS = npm.repmat(TRANSFORMATIONS,BATCH_SIZE,1).reshape(BATCH_SIZE,4,4) # Intialize identity matrices of size equal to batch_size
# Store the transformed point clouds after each iteration.
ITR = np.zeros((MAX_LOOPS,template_data.shape[0],template_data.shape[1],template_data.shape[2]))
# Iterations for pose refinement.
for loop_idx in range(MAX_LOOPS-1):
# 4a
# Feed the placeholders of Network with template data and source data.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
predicted_transformation = sess.run([ops['predicted_transformation']], feed_dict=feed_dict) # Ask the network to predict the pose.
#print (predicted_transformation[0])
# 4b,4c
# Apply the transformation on the template data and multiply it to transformation matrix obtained in previous iteration.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
# Display Results after each iteration.
if display_poses_in_itr:
print(predicted_transformation[0,0:3])
print(predicted_transformation[0,3:7]*(180/np.pi))
if display_ptClouds_in_itr:
helper.display_clouds_data(source_data[0])
ITR[loop_idx,:,:,:]=source_data
# Feed the placeholders of Network with source data and template data obtained from N-Iterations.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
# Ask the network to predict transformation, calculate loss using distance between actual points.
step, predicted_transformation = sess.run([ops['step'], ops['predicted_transformation']], feed_dict=feed_dict)
# Apply the final transformation on the template data and multiply it with the transformation matrix obtained from N-Iterations.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
final_pose = helper.find_final_pose_inv(TRANSFORMATIONS)
final_pose[0,0:3] = final_pose[0,0:3] + np.mean(SOURCE_DATA, axis=1)[0]
title = "Actual T (Red->Green): "
for i in range(len(batch_euler_poses[0])):
if i>2:
title += str(round(batch_euler_poses[0][i]*(180/np.pi),2))
else:
title += str(batch_euler_poses[0][i])
title += ', '
title += "\nPredicted T (Red->Blue): "
for i in range(len(final_pose[0])):
if i>2:
title += str(round(final_pose[0,i]*(180/np.pi),3))
else:
title += str(round(final_pose[0,i],3))
title += ', '
# Display the ground truth pose and predicted pose for first Point Cloud in batch
if display_poses:
print('Ground Truth Position: {}'.format(batch_euler_poses[0,0:3].tolist()))
print('Predicted Position: {}'.format(final_pose[0,0:3].tolist()))
print('Ground Truth Orientation: {}'.format((batch_euler_poses[0,3:6]*(180/np.pi)).tolist()))
print('Predicted Orientation: {}'.format((final_pose[0,3:6]*(180/np.pi)).tolist()))
helper.display_three_clouds(TEMPLATE_DATA[0],SOURCE_DATA[0],source_data[0],title)
if __name__ == "__main__":
helper.download_data(FLAGS.data_dict)
train()