diff --git a/cottontaildb-dbms/src/test/kotlin/org/vitrivr/cottontail/dbms/index/pq/PQFloatVectorCodebookTest.kt b/cottontaildb-dbms/src/test/kotlin/org/vitrivr/cottontail/dbms/index/pq/PQFloatVectorCodebookTest.kt index ea456c5d1..9f80c1bbd 100644 --- a/cottontaildb-dbms/src/test/kotlin/org/vitrivr/cottontail/dbms/index/pq/PQFloatVectorCodebookTest.kt +++ b/cottontaildb-dbms/src/test/kotlin/org/vitrivr/cottontail/dbms/index/pq/PQFloatVectorCodebookTest.kt @@ -13,7 +13,6 @@ import org.vitrivr.cottontail.dbms.index.pq.signature.PQSignature import org.vitrivr.cottontail.dbms.index.pq.signature.SPQSignature import org.vitrivr.cottontail.test.TestConstants import java.util.* -import kotlin.math.log10 import kotlin.math.sqrt @@ -36,7 +35,7 @@ class PQFloatVectorCodebookTest { /** The random data to test on. The data comes pre-clustered, so that meaningful tests can be performed. */ private val testdata = List(TestConstants.TEST_COLLECTION_SIZE) { i -> FloatVectorValue(FloatArray(this.dimensions) { - (i % numberOfClusters) + this.random.nextDouble(-1.0, 1.0).toFloat() + (i % numberOfClusters) + this.random.nextFloat(-1.0f, 1.0f) }) } @@ -47,7 +46,7 @@ class PQFloatVectorCodebookTest { private val config = PQIndexConfig(this.distance.signature.name, this.numberOfClusters, 8) /** The data to train the quantizer with. */ - private val trainingdata = this.testdata.filter { this.random.nextDouble() <= (100.0 * (log10(this.testdata.size.toDouble())) / this.testdata.size) } + private val trainingdata = this.testdata.filter { this.random.nextFloat() <= ((10.0f * this.numberOfClusters) / this.testdata.size) } /** The [SingleStageQuantizer] that is used for the tests. */ private val quantizer = SingleStageQuantizer.learnFromData(this.distance, this.trainingdata, this.config)