-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_small.py
98 lines (77 loc) · 2.81 KB
/
main_small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/env python
# coding=utf-8
#
# GNU Affero General Public License v3.0 License
#
# MedPodGPT: A multilingual audio-augmented large language model for medical research and education
# Copyright (C) 2024 Kolachalama Laboratory at Boston University
import os
import sys
import logging
import yaml
import torch
from datetime import datetime
from huggingface_hub import login
from lib.model_loader_small import model_loader, trainer_loader
from lib.evaluation_small import evaluation
from lib.data_manager import data_loader
from utils.utils import CustomStream, load_config
def main(config):
"""Run the program"""
# Retrieve the pathes of needed hyperparameters
epochs = config.get("epochs")
dataset_hf = config.get("dataset_hf")
eval_pretrain = config.get("eval_pretrain")
# Evaluate the original pre-trained model's performance
if eval_pretrain:
evaluation(config=config, eval_pretrain=True, checkpoint_id=None)
# Load the model and tokenizer
print("Start the Pre-training process......")
model, tokenizer = model_loader(config)
# Load dataset
dataset = data_loader(hf_repo=dataset_hf)
# Load Trainer
trainer = trainer_loader(
config,
model=model,
tokenizer=tokenizer,
dataset=dataset,
num_train_epochs=epochs
)
# Start the training process
trainer.train()
if __name__ == "__main__":
# Load the configuration
config = load_config(file_name="config_small.yml")
result_dir = config.get("result_dir")
hf_read_token = config.get("hf_read_token")
# get the current working directory
cwd = os.getcwd()
login(token=hf_read_token) # Hugging Face Login
# print output to the console
print('\n\nThe current working directory is', cwd, '\n\n')
# Check out the system assigned GPU id
count = torch.cuda.device_count()
print('There are', count, 'GPU/GPUs available!',
'The devices are:', os.getenv("CUDA_VISIBLE_DEVICES"), '\n')
# Get the current date and time
time = datetime.now()
# Create a subdirectory with the current date
dir = os.path.join(result_dir, time.strftime("%Y-%m-%d"))
os.makedirs(dir, exist_ok=True)
# Create a log file with the exact time as the file name
name = time.strftime("%H-%M-%S.log.txt")
path = os.path.join(dir, name)
# Configure the logging module to write to the log file
logging.basicConfig(
filename=path,
level=logging.INFO, # Adjust the log level as needed
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Redirect sys.stdout to the custom stream
stream = CustomStream(path, sys.stdout)
sys.stdout = stream
print(yaml.dump(config, default_flow_style=False), '\n\n')
main(config=config)
sys.stdout = sys.__stdout__