Skip to content

Latest commit

 

History

History
586 lines (458 loc) · 20.2 KB

README.md

File metadata and controls

586 lines (458 loc) · 20.2 KB

Build Status Coverage Status Code style: black

Apache Arrow Benchmarks

Language-independent Continuous Benchmarking (CB) for Apache Arrow

This package contains Python macro benchmarks for Apache Arrow, as well as external benchmark wrappers that execute and record the results for both the Arrow C++, Java, and JavaScript micro benchmarks (which are found in the arrow repository), and the Arrow R macro benchmarks (which are found in the arrowbench repository). These benchmarks use the Conbench legacy runner for benchmark execution, and the results are published to Arrow's public Conbench server.

On each commit to the main Arrow branch, the C++, Python, Java, JavaScript, and R benchmarks are run on a variety of physical benchmarking machines & EC2 instances of different sizes, and the results are published to Conbench. Additionally, benchmarks can also be run on an Arrow pull request by adding a GitHub comment with the text: @ursabot please benchmark. A baseline benchmarking run against the pull request's head with also be scheduled, and Conbench comparison links will be posted as a follow-up GitHub comment.

You can also filter the pull request benchmarks runs by filter name, language, or specific command. A GitHub comment with text @ursabot benchmark help will follow-up with a list of available ursabot benchmark commands.

@ursabot benchmark help
@ursabot please benchmark
@ursabot please benchmark lang=Python
@ursabot please benchmark lang=C++
@ursabot please benchmark lang=Java
@ursabot please benchmark lang=JavaScript
@ursabot please benchmark lang=R
@ursabot please benchmark name=file-write
@ursabot please benchmark name=file-write lang=Python
@ursabot please benchmark name=file-.*
@ursabot please benchmark command=cpp-micro --suite-filter=arrow-compute-vector-selection-benchmark --benchmark-filter=TakeStringRandomIndicesWithNulls/262144/2 --iterations=3

Benchmarks added to this repository and declared in benchmarks.json will automatically be picked up by by Arrow's Continuous Benchmarking pipeline. This file is regenerated each time the unit tests are run based on the various benchmark class attributes. See the BenchmarkList class for more information on how to override any of the benchmark defaults or to disable a particular benchmark.

Index

Contributing

Create workspace

$ cd
$ mkdir -p envs
$ mkdir -p workspace
$ mkdir -p data
$ export BENCHMARKS_DATA_DIR=$(pwd)/data
$ export ARROWBENCH_DATA_DIR=$(pwd)/data

Create virualenv

$ cd ~/envs
$ python3 -m venv qa
$ source qa/bin/activate

Clone repos

(qa) $ cd ~/workspace/
(qa) $ git clone https://github.com/voltrondata-labs/benchmarks.git
(qa) $ git clone https://github.com/apache/arrow.git
(qa) $ export ARROW_SRC=$(pwd)/arrow

Install voltrondata-labs/benchmarks

(qa) $ cd ~/workspace/benchmarks/
(qa) $ pip install -e '.[dev]'

Install arrowbench (to run R benchmarks)

$ R
> install.packages('remotes')
> remotes::install_github("voltrondata-labs/arrowbench")

Install archery (to run C++ & Java micro benchmarks)

(qa) $ cd ~/workspace/
(qa) $ pip install -e arrow/dev/archery

Conbench credentials default to this following (edit .conbench to configure)

(This is only needed if you plan on publishing benchmark results to a Conbench server.)

(qa) $ cd ~/workspace/benchmarks/
(qa) $ cat .conbench
url: http://localhost:5000
email: [email protected]
password: conbench

Run tests

(qa) $ cd ~/workspace/benchmarks/
(qa) $ pytest -vv benchmarks/tests/

Format code (before committing)

(qa) $ cd ~/workspace/benchmarks/
(qa) $ git status
    modified: foo.py
(qa) $ black foo.py
    reformatted foo.py
(qa) $ git add foo.py

Sort imports (before committing)

(qa) $ cd ~/workspace/benchmarks/
(qa) $ isort .
    Fixing foo.py
(qa) $ git add foo.py

Lint code (before committing)

(qa) $ cd ~/workspace/benchmarks/
(qa) $ flake8
./foo/bar/__init__.py:1:1: F401 'FooBar' imported but unused

Generate coverage report

(qa) $ cd ~/workspace/benchmarks/
(qa) $ coverage run --source benchmarks -m pytest benchmarks/tests/
(qa) $ coverage report -m

Running benchmarks

Run benchmarks as tests

(qa) $ cd ~/workspace/benchmarks/
(qa) $ pytest -vv --capture=no benchmarks/tests/test_file_benchmark.py
test_file_benchmark.py::test_read[parquet, uncompressed, table] PASSED
test_file_benchmark.py::test_read[parquet, uncompressed, dataframe] PASSED
test_file_benchmark.py::test_read[parquet, snappy, table] PASSED
test_file_benchmark.py::test_read[parquet, snappy, dataframe] PASSED
...

Run benchmarks from command line

Conbench can be run from either of the following directories.

(qa) $ cd ~/workspace/benchmarks/
(qa) $ cd ~/workspace/benchmarks/benchmarks/

Use the conbench --help command to see the available benchmarks.

(qa) $ conbench --help

Usage: conbench [OPTIONS] COMMAND [ARGS]...

  Conbench: Language-independent Continuous Benchmarking (CB) Framework

Options:
  --help  Show this message and exit.

Commands:
  cpp-micro                   Run the Arrow C++ micro benchmarks.
  csv-read                    Run csv-read benchmark.
  dataframe-to-table          Run dataframe-to-table benchmark.
  dataset-filter              Run dataset-filter benchmark.
  dataset-read                Run dataset-read benchmark(s).
  dataset-select              Run dataset-select benchmark.
  dataset-selectivity         Run dataset-selectivity benchmark(s).
  example-R-only              Run example-R-only benchmark.
  example-R-only-exception    Run example-R-only-exception benchmark.
  example-R-only-no-result    Run example-R-only-no-result benchmark.
  example-cases               Run example-cases benchmark(s).
  example-cases-exception     Run example-cases-exception benchmark(s).
  example-external            Run example-external benchmark.
  example-simple              Run example-simple benchmark.
  example-simple-exception    Run example-simple-exception benchmark.
  file-read                   Run file-read benchmark(s).
  file-write                  Run file-write benchmark(s).
  java-micro                  Run the Arrow Java micro benchmarks.
  js-micro                    Run the Arrow JavaScript micro benchmarks.
  list                        List of benchmarks (for orchestration).
  partitioned-dataset-filter  Run partitioned-dataset-filter benchmark(s).
  wide-dataframe              Run wide-dataframe benchmark(s).

Help is also available for individual benchmark commands.

(qa) $ conbench file-write --help

Usage: conbench file-write [OPTIONS] SOURCE

  Run file-write benchmark(s).

  For each benchmark option, the first option value is the default.

  Valid benchmark combinations:
  --file-type=parquet --compression=uncompressed --input-type=table
  --file-type=parquet --compression=uncompressed --input-type=dataframe
  --file-type=parquet --compression=snappy --input-type=table
  --file-type=parquet --compression=snappy --input-type=dataframe
  --file-type=feather --compression=uncompressed --input-type=table
  --file-type=feather --compression=uncompressed --input-type=dataframe
  --file-type=feather --compression=lz4 --input-type=table
  --file-type=feather --compression=lz4 --input-type=dataframe

  To run all combinations:
  $ conbench file-write --all=true

Options:
  --file-type [feather|parquet]
  --compression [lz4|snappy|uncompressed]
  --input-type [dataframe|table]
  --all BOOLEAN                   [default: false]
  --language [Python|R]
  --cpu-count INTEGER
  --iterations INTEGER            [default: 1]
  --drop-caches BOOLEAN           [default: false]
  --gc-collect BOOLEAN            [default: true]
  --gc-disable BOOLEAN            [default: true]
  --show-result BOOLEAN           [default: true]
  --show-output BOOLEAN           [default: false]
  --run-id TEXT                   Group executions together with a run id.
  --run-name TEXT                 Name of run (commit, pull request, etc).
  --help                          Show this message and exit.

Example benchmark execution.

(qa) $ conbench file-read nyctaxi_sample --file-type=feather --compression=lz4 --output-type=dataframe --iterations=10 --gc-disable=false

Benchmark result:
{
    "batch_id": "3d97e0185ef44d0d9d095f4b9fdd3fd2",
    "run_id": "54c00bfd6b6147739bbf1224cfdf9b1d",
    "timestamp": "2021-11-11T00:32:15.061174+00:00"
    "context": {
        "arrow_compiler_flags": " -Qunused-arguments -fcolor-diagnostics -O3 -DNDEBUG",
        "benchmark_language": "Python"
    },
    "github": {
        "commit": "4591d76fce2846a29dac33bf01e9ba0337b118e9",
        "repository": "https://github.com/apache/arrow"
    },
    "info": {
        "arrow_compiler_id": "AppleClang",
        "arrow_compiler_version": "12.0.0.12000032",
        "arrow_version": "5.0.0",
        "benchmark_language_version": "Python 3.9.7"
    },
    "machine_info": {
        "architecture_name": "arm64",
        "cpu_core_count": "8",
        "cpu_frequency_max_hz": "0",
        "cpu_l1d_cache_bytes": "65536",
        "cpu_l1i_cache_bytes": "131072",
        "cpu_l2_cache_bytes": "4194304",
        "cpu_l3_cache_bytes": "0",
        "cpu_model_name": "Apple M1",
        "cpu_thread_count": "8",
        "gpu_count": "0",
        "gpu_product_names": [],
        "kernel_name": "20.6.0",
        "memory_bytes": "17179869184",
        "name": "diana",
        "os_name": "macOS",
        "os_version": "11.5.2"
    },
    "stats": {
        "data": [
            "0.004986",
            "0.001076",
            "0.001132",
            "0.001086",
            "0.001221",
            "0.001143",
            "0.001074",
            "0.001057",
            "0.000990",
            "0.001032"
        ],
        "iqr": "0.000079",
        "iterations": 10,
        "max": "0.004986",
        "mean": "0.001480",
        "median": "0.001081",
        "min": "0.000990",
        "q1": "0.001061",
        "q3": "0.001140",
        "stdev": "0.001234",
        "time_unit": "s",
        "times": [],
        "unit": "s"
    },
    "tags": {
        "compression": "lz4",
        "cpu_count": null,
        "dataset": "nyctaxi_sample",
        "file_type": "feather",
        "name": "file-read",
        "output_type": "dataframe"
    }
}

Authoring benchmarks

There are three main types of benchmarks: "simple benchmarks" that time the execution of a unit of work, "external benchmarks" that just record benchmark results that were obtained from some other benchmarking tool, and "case benchmarks" which benchmark a unit of work under different scenarios.

Included in this repository are contrived, minimal examples of these different kinds of benchmarks to be used as templates for benchmark authoring. These example benchmarks and their tests can be found here:

Example simple benchmarks

A "simple benchmark" runs and records the execution time of a unit of work.

Implementation details: Note that this benchmark extends benchmarks._benchmark.Benchmark, implements the minimum required run() method, and registers itself with the @conbenchlegacy.runner.register_benchmark decorator.

@conbenchlegacy.runner.register_benchmark
class SimpleBenchmark(_benchmark.Benchmark):
    """Example benchmark without cases."""

    name = "example-simple"

    def run(self, **kwargs):
        tags = self.get_tags(kwargs)
        f = self._get_benchmark_function()
        yield self.benchmark(f, tags, kwargs)

    def _get_benchmark_function(self):
        return lambda: 1 + 1
(qa) $ conbench example-simple --help

Usage: conbench example-simple [OPTIONS]

  Run example-simple benchmark.

Options:
  --cpu-count INTEGER
  --iterations INTEGER   [default: 1]
  --drop-caches BOOLEAN  [default: false]
  --gc-collect BOOLEAN   [default: true]
  --gc-disable BOOLEAN   [default: true]
  --show-result BOOLEAN  [default: true]
  --show-output BOOLEAN  [default: false]
  --run-id TEXT          Group executions together with a run id.
  --run-name TEXT        Name of run (commit, pull request, etc).
  --help                 Show this message and exit.

More simple benchmark examples that have minimal scaffolding:

Example external benchmarks

An "external benchmark" records results that were obtained from some other benchmarking tool (like executing the Arrow C++ micro benchmarks from command line, parsing the resulting JSON, and recording those results).

Implementation details: Note that the following benchmark sets external = True, and calls record() rather than benchmark() as the example above does.

@conbenchlegacy.runner.register_benchmark
class ExternalBenchmark(_benchmark.Benchmark):
    """Example benchmark that just records external results."""

    external = True
    name = "example-external"

    def run(self, **kwargs):
        # external results from somewhere
        # (an API call, command line execution, etc)
        result = {
            "data": [100, 200, 300],
            "unit": "i/s",
            "times": [0.100, 0.200, 0.300],
            "time_unit": "s",
        }

        tags = self.get_tags(kwargs)
        info, context = {}, {"benchmark_language": "C++"}
        yield self.record(
            result,
            tags,
            info,
            context,
            options=kwargs,
            output=result["data"],
        )
(qa) $ conbench example-external --help

Usage: conbench example-external [OPTIONS]

  Run example-external benchmark.

Options:
  --cpu-count INTEGER
  --show-result BOOLEAN  [default: true]
  --show-output BOOLEAN  [default: false]
  --run-id TEXT          Group executions together with a run id.
  --run-name TEXT        Name of run (commit, pull request, etc).
  --help                 Show this message and exit.

And here's another external benchmark, one that runs an external R benchmark.

Implementation details: Note that the following benchmark extends BenchmarkR, sets both external and r_only to True, defines r_name, implements _get_r_command(), and calls r_benchmark() rather than benchmark() or record().

@conbenchlegacy.runner.register_benchmark
class WithoutPythonBenchmark(_benchmark.BenchmarkR):
    """Example R benchmark that doesn't have a Python equivalent."""

    external, r_only = True, True
    name, r_name = "example-R-only", "placebo"

    def run(self, **kwargs):
        tags = self.get_tags(kwargs)
        command = self._get_r_command(kwargs)
        yield self.r_benchmark(command, tags, kwargs)

    def _get_r_command(self, options):
        return (
            f"library(arrowbench); "
            f"run_one(arrowbench:::{self.r_name}, "
            f"cpu_count={self.r_cpu_count(options)})"
        )
(qa) $ conbench example-R-only --help

Usage: conbench example-R-only [OPTIONS]

  Run example-R-only benchmark.

Options:
  --iterations INTEGER   [default: 1]
  --drop-caches BOOLEAN  [default: false]
  --cpu-count INTEGER
  --show-result BOOLEAN  [default: true]
  --show-output BOOLEAN  [default: false]
  --run-id TEXT          Group executions together with a run id.
  --run-name TEXT        Name of run (commit, pull request, etc).
  --help                 Show this message and exit.

More external benchmark examples that record C++, Java, and R benchmark results:

Example case benchmarks

A "case benchmark" is a either a "simple benchmark" or an "external benchmark" executed under various predefined scenarios (cases).

Implementation details: Note that the following benchmark declares the valid combinations in valid_cases, which reads like a CSV (the first row contains the cases names).

@conbenchlegacy.runner.register_benchmark
class CasesBenchmark(_benchmark.Benchmark):
    """Example benchmark with cases."""

    name = "example-cases"
    valid_cases = (
        ("rows", "columns"),
        ("10", "10"),
        ("2", "10"),
        ("10", "2"),
    )

    def run(self, case=None, **kwargs):
        tags = self.get_tags(kwargs)
        for case in self.get_cases(case, kwargs):
            rows, columns = case
            f = self._get_benchmark_function(rows, columns)
            yield self.benchmark(f, tags, kwargs, case)

    def _get_benchmark_function(self, rows, columns):
        return lambda: int(rows) * [int(columns) * [0]]
(qa) $ conbench example-cases --help

Usage: conbench example-cases [OPTIONS]

  Run example-cases benchmark(s).

  For each benchmark option, the first option value is the default.

  Valid benchmark combinations:
  --rows=10 --columns=10
  --rows=2 --columns=10
  --rows=10 --columns=2

  To run all combinations:
  $ conbench example-cases --all=true

Options:
  --rows [10|2]
  --columns [10|2]
  --all BOOLEAN          [default: false]
  --cpu-count INTEGER
  --iterations INTEGER   [default: 1]
  --drop-caches BOOLEAN  [default: false]
  --gc-collect BOOLEAN   [default: true]
  --gc-disable BOOLEAN   [default: true]
  --show-result BOOLEAN  [default: true]
  --show-output BOOLEAN  [default: false]
  --run-id TEXT          Group executions together with a run id.
  --run-name TEXT        Name of run (commit, pull request, etc).
  --help                 Show this message and exit.

More case benchmark examples: