diff --git a/docs/CNAME b/docs/CNAME new file mode 100644 index 0000000..e50745a --- /dev/null +++ b/docs/CNAME @@ -0,0 +1 @@ +airesearch.js.org \ No newline at end of file diff --git a/docs/assets/navigation.js b/docs/assets/navigation.js index 867014f..196a71a 100644 --- a/docs/assets/navigation.js +++ b/docs/assets/navigation.js @@ -1 +1 @@ -window.navigationData = "data:application/octet-stream;base64,H4sIAAAAAAAACpXWUY+aQBDA8e/Cs2mTS9MH3zhPq6leLaw1TdOHdZmDjbBDl8HTNP3uDdazcC6z3JvJ/vmNCKz8+B0QHCkYBwrNASxNix0kiTZpJXD+GG+DUVBKyoJx8FQbRRpN9b4nfZdRkQejYK9NEow/fvgz4vDNKlwPxJvUj8/FahmXoLTMJ5m0FYO/TofhAu9lpVXz0WO3Sj+9knaf4LMROP+X9snd0A+vH2YCPd/22vg5AUcSeL0uDPqqHEoL3IPhLls786PfsaZ6BwKbwxi10zEsNOdzide5PIF1obcVRx5LbN/qC5PA0am6QhYmK5XzrC9L/oMnmoABmuUBCBoCQ3134W31JvJumHnnR2fyoBUaxrsUfiqeTj+LL+vFhMGujZ8TWGolwBafLNZltXwIGfc2ZgakYMBKgqU0aS1TWGECeQRlfnJN6K/ZERTm+f/71g13G567duf5PV43YkBdNM/VN1CE9vxMzSwWMdme/Y3JmSGFJJV93YRxGLnQ1jKDVMrKEjaR8zG6LnIASKuyWETTcOU0WutepvUT9FutyAtuYdcPbWHnB/Rel5BoyTAvCYeVuaYYmq1DgfN27RY+qvlPiaGQhrTqfStxlxxNUGzRJgIjROcu3y04qk5TqOgRjtT0EyzKHM6Gk+2tmRHPoNMsghwO0iiYoFFQXh6icL1wjeGPGDyq2QhnFn7VYJRzT2Ny35BYFzqXVtPp/tRcLqnI/ULQX9+M+PkXmXeFWo4LAAA=" \ No newline at end of file +window.navigationData = "data:application/octet-stream;base64,H4sIAAAAAAAACpWWUW/aMBCA/0qVZ7Rq1TRNvFEKLVphjLhDU9UH41yDhePLHKcFTfvvk1NGE7DP7DX3+XN8Pp/9+DuxsLVJPxltreHCJr1ErKXKDOik/3iICtQvYOz8Zszwjk3vk15ScrtO+slzrYWVqKvLY+bD2hYq6SUbqbOk//nTn96x7ifWtl4BQ+Y+h5UdjtDCYQ0npn0oPngoLRACFz5DgtqCtqFMnVL/pbw6z3kVl475ixSoCd+eIFSVMLyEh4V3pYfgieCppbgFDYY3efcVX74P33Od1zyHKWagFlCqnW/KME3+g8vYxYOVSloJFX0MHJuWICRXwzU3FVG6x2j8ULgRDK95JUXkpB2RcfWUm02Gr5rh3RsaMndBUlzuHMJwqGS5Qm4yv/YEIzdjoi2YZy5CFQHFCrJ9V5grvgPjLeETipx0yq1YByYsXOz7wyAdLHwztcJEsl5B5usFKHjhWgADU4wN/KpBC28hE3hsklQWUnEj7e5658qOC+tPUZgmUzWD2nB1MYPQfWHRNLncTygUryqoLpvPXfPHqy8ddQrcBLehaoIpW4wGU2+7acWpltVgS1iFHUtYxQVyI0vIJCc0/xAyne8bQPedkSvoTOq8Yng3S5fECT5G482hPeJhOpifKXdoXO4uboaHcYT7iCTvsBLb/zLRGWz9V5kHJMQ52IFS77z/lukytO7ANZdRwNeFCKEs3Hp+gLBomrWMDRapNYHEEni0xFujwkXegs7ufkPUAsr9Xw3mk3gDPB5BniiGpRSRW/yt0hhuQFM3eBuLv6jS0egr+zafDIk31YGJ65p1uNZ/a7Auq/ubAeE9han9LZW0KbjXogDv+rtETOXSlELBtZUi+Cjyk5TaQrFEkzFcIHof9l2CUtV5DpWdwdY6fohFqaBxeLVB2lN3T38BdUwos0cNAAA=" \ No newline at end of file diff --git a/docs/assets/search.js b/docs/assets/search.js index be14f23..624182b 100644 --- a/docs/assets/search.js +++ b/docs/assets/search.js @@ -1 +1 @@ -window.searchData = "data:application/octet-stream;base64,H4sIAAAAAAAACqWZbU/cOBCA/4s/RxSPYd++bSlcqys9jk0PnVboFJJhiUjiNPHyIsR/r5yEjb2eIIf7htiZx07yeOxMXlglH2u2WL+w+7RI2GJyFLAiypEt2AYLrCKF36Nis402eC4TzC6xzJ5ZwLZVxhbsdlvEKpVF/Wk4+OBO5RkLWJxFdY01WzD2GhDDxbJ4wEqdR9V9Ih+LUH5t8/ZHIuN8B0nzUlbqH4yVrL4VCT6dVTJfqSotNsRQ70SPvKqv4fn3VYlxGmUnd1FVD1/XfuTIgS6+nIVSM4ZH2IX4ovFJVVGsCGL3y0jQWfSQxrIY5nUB3tj8BpN/5VZtb/Aii56xotBOkC++VphfySoJ5aWU1F2wA0bejJNU4fCd0L+OBcpCYaEGHHCDPo4HLz58YKmE8nNUp/H7Hu8F+l+HXtSnWockLTZ1s7DJKyHiRl5Lnx3Krz9WV8MXsx/5Pwb6eb688BtIR44cKMQnFcodZHicvcAPDRPKeyzeqZVm1MgBukoQSs0YHsEKG7lSVqenf4Z/XXw7GV4muxBf9AbVMsv6Z0juxHbICPQuqdm9abYd4wvPIxXf/f1zuVpeEljjV++iHFdRiT8vqfqw+80bhlEV363Cy9PlOcUzfh6HvMKbQd4V3oyEpfdpiUkaDSPfIsaBjQPOINqI8YaXWapWqDeCGClT7YBRWL0cV5hHhUrjoQMVHeg9zHazwVr9wCel9/YTmZcZNmBqqMFg3+EeMd3crdI8zaIqVc+fn/Vko1iRZ5nh4FHDXWKGD1ER44ksYiy7g+7y4tvQkIMJHxs2xCo/q/DXFouYeqd4J3pkKQ5lmcYa8Eclt2X9/ctyuCa7sdRg1wFLmwWzeGEPWNWpLNiCwYE4mLOA3aaYJfq1qp1HwGKZ51jojSaR8bb587oLa2+iDm6jPx2yYH0YCH4wnfHr62D9ltz80PzjjdH/p0nkLFhzKpE7idxKBBasgUoEJxGsRMGCtaAShZMorMQjFqyPqMQjJ/HISjxmwfqYSjx2Eo+txAkL1hMqceIkTqzEKQvWUypx6iROrcQZC9YzKnHmJM6sxDkL1nMqce4kzm0BtA+cdIe78vA9exp9aH8IgWyDuPaCkw5xVyJuW8S1G5z0iLsicdskrv3gpEvclYnbNnHtCCd94q5Q3DaKa0846RR3peK2VVy7wkmvuCsWt83i2hdOusVdubhtF9fOcNIv7grGbcNAOwOkYeAaBrZhoJ0B0jBwDYO9GtUUKbpKEWXKNgy0M0AaBq5hYBsG2hkgDQPXMLANA+0MkIaBaxjYhoF2BkjDwDUMbMNAOwOkYeAaBrZhoJ0B0jBwDQPbMNDOAGkYuIaBbZjQzgjSMOEaJmzDhHZGkIYJ1zBhGya0M4I0TLiGib2dsNkK6b2Q2Axtw4R2RpCGCdew7l/NCUS/o2LSHt31AaJ7bcXd25+Sd0X9yIIX9l93XuG709EL40ds8fL62p9PFi+vxhFF/9ZOxqFu86i0qMcG9XgMVR+u6rbhGbcn+Z4qeqgYy1TyRreG2rObMVEwJgpjoHnXcVbSYRrIMcQyuXVhxuMZ9XQUPiklse/MGPObGBOcjIeqrg9jEKcGcTqG+Nx2VJRUTePFQM4M5MwL2VxsByy7xm8PNKboN8O249db3nLMKRo+cj8hd73znmKsFL+F0jHiplPcc+Y9Zz6K0/ZmHYkPjYs7/CAQLKK5LvwWRke8fftC0MMMhf0M7lA14r3Sr3TWzIx7x0fdvAalsMo3zdthlkRWvTIWr/BbvW8fzrLuw1mu22pV+5WtBxvPxu/RbFBFWYZGo7CHgUEDb9yOlbfNQYNnPGfwe87tl7WH5tW3odxWMq+773AG2QB7cZtO4q9tVEdWKQAT5Edqm4i6R2ByjAIAfgWgbZ/VqsIot1CGKuCnSosybprFM8od+NW7lveoe5QGxyhP4FefOk7fnjRoxrIFv3XbtO3qvm1owIwdAvx2iAamd5q66wE6RwwwSgH4lQL9ve9RVomSVfNBsIcZE/ScX9s4LPBJaWJsdhmNsmIsWOG3YJveWfXWO4vbfl2rTlSmFtxYG8JvbdhwXQ1v+zaeQTaPb36rpSHXu87mzXPct0ENsFFwhEfBuQ5YmZaYpQWyxfr69fU3LvU8QvcgAAA="; \ No newline at end of file +window.searchData = "data:application/octet-stream;base64,H4sIAAAAAAAACrS9C5PjyHEw+F/a8Vnj7/ixUU+gVtI6ZNk+O07y6bTrc1zsKubQJLobOyTABcGeGSn83y8y6wFWAVkgZ28ipO0aAMysR1ZWvutvD0P/8fzwzQ9/e/jQdvuHb7TcPHT1sXn45uGl6ZqhHps/1N3LpX5p/tjvm8Ofm9Ph88Pm4TIcHr55eL50u7Htu/Mj/fH2dTweHjYPu0N9Pjfnh28eHv57s4Bu13dvzTD+sR4+7PuP3ff9v9nfpZgWv7sVSXs89cP4fze7sR/+vds3n/516I/fjUPbvSygynx956j+7fs//uG7U7Nr68PvX+vhTI8r/fJORH/653/9vgcYNIbwya2gm0/jUO/GBYjuzZ2A/rV+a3d9R8NzH9wM9vjU7P+f/jJenpo/HerPzbAEevbRreDPY3P8r37Yf9//ue+XZiH+4PYFO30G0v2+//2hPT319bBfXLPZV3fO9u/bsaGnGt7eC7DvxqYbCSKbf/Tl4PlN8PkX7MXv+3+qz+0uv1GSD28fB3CNfwF627fdyxk5x+JIFr67cyzTr7/v/+0/vvsvejDpl78A0X/+8Xd/ug0RfHknou+bT+P3fQBC40k+/CI03/cfmi7DjK+/uhOBYzXf9wCDxhB9dudO+e5f/uX/+P7//NO//57eJuGTW0G/NOPvDodpDReP+viTO0CHH6F4sAw7/uZW4Md63L3+X//5u+9+9+cFsFdvb+b6u6E+Nf/55yX+EN7dDKyph93rd9//+V9+98cleFev7wP5X80TCe+/mqc7gbUf2lOzb2sapP/iPsBXEhQJ+uqbm4GfDu34XQMHwa5ZotT4g7vAwnb8rjnW3djuKIlt+cMsGsargGfsh91rAOs+f8SneRgFnzr7fdOd+yED5e/sF/+LxeA2D6d6aLox9IOA/6d6qI/N2GRRXH/0BTjq/T4H3b6+Da5WSugA+P378fOpWYG9tV/9L55HsoVuEAPompccEvv66wyga17CAPTKCKAfxAiOl0MOi339dUZwvBzCCOTKCKAfxAj27VsOi339dUawb9/8CKqVAUA3qCWox7VV8F98pYVA8GEtirW1sL0hRtN8OuVw2ddfZxzNp5MfBFsbBPSDGMGhz25q+/rrjODQh03N1jY19IMYwfnnYcyhce+/zhgAuB+EXNvX2BNiFKf+Yw6Pff11xnDqP/ohiLXjAfpB7eym7rIbz77/Sru6qbuwp9cGgT0h+dP5Q7N//9weVpjU9Wdfi1MFHGGfrHHe634RI3yrh7budlnUV998nbF5BH5gam3NQo8o6SrLA+qvxwHqaf+viVbk5h+a82udRzN98nWG4eCHsawdKb4/xIje3zCk9197TO/jQa2M6P3KkMah7s6n/pxFef3R1xlUwBCWao0nTH2iRraqXYUvvtKYEHwY0Jow4HpDbaa627ddlh1Mn3ylzWThh1N1bUC+P5kRZY9W/8HXG004XMUatdm+ZEayhuqrjiMMY41ZY09ITtBmhQP3/mvt/zaIA2qNS2NPiFH03ZU1aQGRe/91RgHAg7xmVkaBPSFG8ddm6LPD8B98nXEg9LAca0Rl+0KM5Gno6/2uPmc51/VHX2dEAYMf1RrzmrpEKWj1W16Hsu+/koJWv00n5ZqQiT0hFeU6y7rc+6+lKteBdbE1KsOeUDa87DnSfb1DpJvUs7UTpCOPjz/2+8vhZjTb8HkemxcPCaR/aLumzkpHEdLw+S9C+sfLYWz/ran33zWH59+N4ARu+5W1ux459fNf1Kl/vRwOn3/fd12zG5vsZog6M/vZL+rEPx363YebcfuvfxHKuZt2De31L34R6j/15xaWrj7c34nl3/6i7vy5+cN/3ozfffyLEH7XP4/H+tPNOKfvfxHafx76U3/JnsQR2un7X8ZqIGDnP/rheDu3ufrFL0L9+6E/n/+lG4f+9PkP/TkrUkU9WPjhL+pIfxrb7Pj9B19JMAXoQUtYcSdubV+IkfxuX68PZEK1dd+v4luZwJdm/G7N9HL1zdeZRo8gCC1rolfo0bKz+vLy0pzH/2g+jRCC9vv+eDo06J5ecliTH9/qG//YtC+v37XH9lAP7fj5nz6Dy7vejYshd/THd6H7c3No3sDC+fu+2zUnF4/5uz/9O4WS/MGXof2+GY7/OjQ/X5putxT6mvn6zoCe7/tTuwMA//vQX07nP/zz7+jInvm3S8j+snloMezim789vDXDGWSdbx74VmxBtXxum8Meon9tPzYPu/54bND8s+93F2z+xX1mJxE+tl8/Fg+bH4qNFNtCsr/8ZfOD/zG+YBu+rQTf8E2xNazciA3bGqE2Ev4ty43asK0Q1Ua770r3t9qwbVnojXHfs2JTbKtKbRjzT7hvAEwO/5S+ofwrD5aVG7ZlhdowAKyU3DCAXOgNLzZ8y6XccOZ+zQGwUGzDxabYlhXfcABcMLPhynWLa/i41Bte+le+x9x3WRTuifBdho7YJwKRm42Q/pVyAIX2TwByqdlGVBux5UxuhHENWWwE/lwy/4S7YUnhOi/9ZEgFo1BmIz1kWfpXlX/i+6wK3/B9Vjgb2myU2PAtY2ajpJ05pdzkKu2GpcpNsVVcbZQHrDxg7QFrTxGa48ypjfY0of1kaD/N2k+zLv2ralNstak22rhvysINvWTu49JTRgmQpWSbUvqGp4xS+195yKXvc+khV77PlZ+MykOufJ8r6ea78n2u/DRXHnLlIVd+NoyHbJinc+5W0gjfkL7h+2w8ZOMhGw/ZGE/WRRFaALsAyijCVilwRsoNK6TfT4XvOCt0+KwMz6rQAhRMwQ70vWfTZpx2IxOhJf1vpw3JtCUexsrwqAqtsNt5QMH9DDHOQ0s4IBzZCFPIdjynQr6DT5A9MeBCXC0xKHjFOex/jrudb0XhtrQu3S5Vld8Dyu2BwpRA6XxbaGapWBUSp5ZvGVARlxu+1bAkXG/klsNeskBhRngFeIB8uYGtAEsiCtcJJmB7KJhlYJrurQgtuZHbEnDCpnUtvRFbBiQqyo3YVsCjkGXYZ8bDk4XHK5mHJwMO5BsVLAoyDgmrLWGDw2aSAYUsQwtRyA2TZqNwlpgqPDTF/GeKh5YILRm+U+FZQKECChVGoYxv6cK24hVn0YpzWHHNllYcXiGllmYDo+NlaZe54naVlWa4OfhWwa6R2Gng/5pvFO4cLTZqy4BXaViNSkKvAJYGVqJhxYURG6ZxNYCkdRVaxgEpi43cFqWMh8GjYQgYRrk4DHxljxe2QQpWxg2Ei8qOpIAeA5nCvkYyZcD9cGwSlhtPNTgYLHFWwK+QOGEcEqkZaAnpQUOnFXIkoPASUBr4QSnCM+lpuIRVBbqBPWQbpW9UvmFcoyo8gIqFFvcvhW9I3/CwKw+7Kt3wWeWBVx64KXwjwDYcNg4wOOOBGw/ceOBG+/EZ33OD2xYOd2PcS1448Lzw4HnBbSteWBEtrAQiLMTSwkpHn7C9cIHhfIEBclNaDqWFhiOdbRWQMEofxh2mHE5A5PoViBwo/HBgTbjSBuhZYEeFJ9lSyw0v7HaEzgNTMSDVgIyyVcAA7FHAYbTVRm6VgGfGv2WF/y1j4RkPLQFUDt1m0uHlTIW3AQfIhe5tFX5h/DNuZ1lskLhwHNyeBSCa4VlgWwEHcHsLBRmwbZWh5XDESySjJVJ4MpiNKLaFrKIlUn6JqnKDh3+h7FIZ4GiwVgJmEE8K2PkokNlDpEB5DhdNVAYWrdhWkoNQAyut3eoJEMfs6vnTRHJ3NDDHbhxeFH5MpZEE+RYXBzpVgZhVKP8IZlrr0q8mfl85aLCa9jNLcPBL5oEx6b9iHhh2TNhV8++Mb1khGkBwO0fMrZBtGY8ADzwAIjwmPO4QBh53WsMcAnYDw4Av3FsUNlW14aL0P63CD4xvSY8ADzv7KGCQAYPErQ//xsPOPtPhuzI8CyhkQKE8ChVQ4GmHE42SAr4MM6j8DOJZJ6A7KiBQAQGKzBI2JcrMyvANTqh9ixsdp1B7DLCHbSNMknZDiElcRSSugY51ucSFdCBx6biQcYcKPEH6Vbq0TKfiAuiX20OP4wTAF5bnwCd4gFSicgKFsKxEbAUsOQhe2xIkISQY+MwSDLZQ3ingUMIzFABzPEPLcsNL1ILMBtie2MKBz0tg7iCR8FKElgwtZHkCJDztoZVleBv6VBr/DA8nfFahzARMGA8nQFsFFJV046qUfRTPu47mvYTJhdOr3BrBo3kv3bxLXqFiLEFuBgoFYVBaVVnahcBP8GBgfooVSMT4lQF2UQJ5Kug7bnqpjNuoJew5hSc4nHNK+2ea4zAkjts9q7T/Ds9Z+6zaqG0B8i4etHLD8ZyFv8z95e4vTBHIktxID9soD9EEzKYMbyv3SwtZFIX7y9yvRMHdE+H+SvdXub/a/S3d38r9dRCZg8iY+8vdaARzEJmDyBxEPKgSUa2M1rR62Pwg2OJeqtyalqXeoIQEWj+SSeGWEt7gnjJFZY8CXdo15dtCCSdZlfCmsgelduIIHIUCj0yQCgQzvsWL0GKwg4DcOA/PRGjJ0FKhpUOrDL+t3BEMApB7KwIOwUIr4BAORzxrVTRrBmYNtvh81oybNQ3cEM84Vtkz1cDZJNH+we3havyesB8L9zXDgxBb+D2qrhzVDG7Fc741IPki98IWkq8GsrTMCDaYZUaglIA5Y1uBdCP0Rm81sB1RhmewKQCyEMa3ZOHfShaeIYsyifRhYpUVNFghFyVEfIeCQ6VR/lBuGpQqrQGmksKyZlk6egIWYa0BwApQka+Ulwul9hqAAqMIKoIlGEzwzCtAEMWDBXk0cz+wE4SCDk6QbaHIhucw0AYcBhy1JQV8B7Ul+wzFbOTl2rdKq+Zzx6UBLZrXtiXyVRR94AzAAxs0GiFVaOnQwj0PygJ2Hn4LwpTtlVCF/04hxQLHRz6I31n9FN8GHPbIBr6gdPhFGd5W4ZnxUDRwTgmKhA44dMCBZ7ZtBRw6jAOtXTD1AonTQql877Xx35VhHPbkwxa3rUQvTkwhoCeLcpmumKMrU3G0zqJ+sSm20jjLagl6IR45sNusNYhv7PLD+QmGOaDwwpmdkColTCa+kpU1RYKBQsKT0m1bVaFN0X5iNZrSGVZ0xcEGCFZYa/kDwQ9NbtBLoOliC91DmZRZy5CF44ww0AdrogULItpf0SJmDbDYMgBDOcIHMRo4L5gxJZ6mxVaD2mxFboPMuLBWKLTvSW2VPguNW7Ma13joFlsFUrY1Uikn/uIPBHePRPgeJVyQdIS1GSkUcB1YZdzkwj6xA+SoZQNn5jghqAAYDw6o3rVw/mAMlqqAleNU4ks8WiowLKNlVMOBjqbRCrZDWTo7iADV1n1n/DM0j6KKXnlLo7DCkYBnIjyTbtgCbaQIudIeXlXaqRBV5RtuRYQJCNBMqmAXGB6eidCSoaU8UrSV2mdlaKHKAyc9mkvhmSyK0GKWJmXBwyPh+ivxLIHZkQXScMU2Es2lgEwWZfhFFVrGv2UBBZpLER7jbvySifCdDG9RkAezPtPhtwEH88OQLOBAHRlIVlqBGpgtd0QmuZ8paR0Z+AO/FJIHFLwMb8MweJipsK+lYA5w2E9SBBQioBB+80jhKUqKMArQB9x3nlSlLPzcShZa3C092qzsb2XAYZ0b1UbKMArLW+BRGIQM86TCINDBgW9VGIUKGJQMLRVaAYUKo1BhFCpMlA7rrQMOHWhKBxw6jEIHHDrQlHb7QuowDB1QlA5Fwu1jMyg4lH+QywZExh23L0FEB06lJXL7SjlrhpLSes0MEAPyH+FcYtBfZGq6KJ0DrHLsHjWC0n2MiwPTa5eEsw2etoXSjt8LZwxhXpmEo9Hye2Usw4e9UArsmOP8SGGFFRcEynvF1gBnLrCTwJVx11Sw6kj6CoQVPA+sNcyTOVg7LWDm7BEazeTumaU38CHZA4Gh3RMOHIXHgBM4rZtHejUL9EHrrAQVnuNWKZln+TzwfHgr8Ohn1qohtiUIVjgz+B2KRNB3jrwZxBJQzNxbnAvonWP6oAaheAYuNYG0DwZVJH2YMpBM7E9F8LxZiQNtuPZsEBwPB/cLexAwdw7AyAT6xvCnVcBVBXBV6Inl6jywdW75OhiSjWfnoEoUfrSOr4JIZfkqU56HQstySWzJ0Aq/YOE79BshZDvzAJnz0Aq/teyPeZ4Hjyx/w1b4qQg/sOwKW8YN0jEp6IBlUoBW+qVyfAj8rjJ0TwUoOkDWYbjaT5q00hxjG1mGgSPFMdxNKrR0aE2/rZzeKEsvo0nU5w0cbihJ41tcNvtWhFboVaX8KKuAAy0A9rd+UWUVcNjTGlsstAIOIxwJSRPGYcI4TMBhT2tshXEYj0MVRWix0OKhJUJLhpZyI0LriHtWhlblVksVAQcLOFjAwQIOJtzIVSBExVR4G3CwgINV4RcBB/cMQvGAg/ttpJDJ2rdhHDzg4Dp859dc8So8CzhEGIcIOEQYhwhzJRyO5CyJfVEMPBhg+186S4RT1sGaiDo6Q7M3SOTGmq3Awor274o7EZ97pxQIWZVCJ2XpJXrvTcWzz7JwoDNU41GwRDUeLDvAzEEh8T7UAr2faE0SzuXJvDoP1jmrrdqWtF9h7MdWgxFXguhdgUEMDajw0gYMgAaIVmbopJDMtWTpMEm0AOIjHAt0A6LBwETDNgo7ZFseiEJTNX6HvcS3CNi20Ieiy41CW7V9JkNLhZYOUAIOWYWW8S20VSNeFXBYEyC2Ag4VcFjVV2yUCsNQAYUKw0DNFz7TYRQ6YNABg3YYEiKL/WIQtv8DCCJLRCaD5xYdtwr9PGjM0ZbYIMDP2tMwggEtFfBvdG+hGQOduchRtUC7rvI+XI6OW2HdiOi4BbDWcQstjlFCRglnsIaYBWlnXMHY1UZviwrGqUMLjGfAjJWuQsv4FqrwCgMJQIXHSCg0XsvUdchixxQDI74iVHiFAVcwRrnBnQ4cGi1kaE7W6BpAb6lxfinm7MpAPsr/xOngzqkolbXvF7DdChtjU+EUgqlb4xQKtEZxNE+iC5wz11LWdQ+tUrquKTTxGAHPNI4ePNVlaFWhZXwLDfH4WzzAYACq4s4WodBNbL+ToaVCK+CoAo4q4KgCDjRi2xZY63D3oSEbxqbQW2xbAYcJOIzDkaxd7HGBEg4/wKIvrV3wuRgriBvvAQYeiAcCHEcGjQ9mY+UcA74398pKOUDsKFrD5GgUT6QV0b2VECRN5V6gNga+LWlVIEsL4PNG4QXA2h3FgGG5Hynp+oDGRs3Mxqo50gfDlMLK8PCxVV5s/JWGzVVYBcxREgbEFMEWU8jQQhslt15si84eBFxWToJnKK1zhxoMNKBRSNzJ4D7yJhhl3XwWnPWucfStFdsSxOcS5WJwolXMTaE1hsB8COtpZU6cgyFZHRJwytJPG0pp+KgKLyurGqKQ4WYOj31AoKzVCVpWrAP7MApLSHto2rCtCikRAunQ7qLlRheF240anSKwG3XBwzPfFY2Mz77F4EIDUXg6tMrwFvZCAY+Mf4mEZ1uwkTEUD1gFOmM1Ex4ZekrwkfKNgMBKQNARDPCyLfTBQDwfDxh4GAQPg7BLjW9laIVB4OkPyCxh46MqtIwHJwIKYe1TG43yj30UMIiAQQQMIoxCBBSoAQANa2H8eKSnHWCt7q0MOGTAIcNSoE5sfxFwyDBTeHTb78JaqDAMNFnYVpgpFZbbKo4AWYVxqIBDhXGoMA4VcOiAQwccOoxDh3HoMFc64NABhw44dFgOHXCgPxLHVgYcZcBRBhxlwFH6La3LgKMMOMqAoww4KjeOhA3HDlgGvjtdLdtFJhessOwXdH7UPmE/MauTVDZYGHcY7gWmbIwwevfxVKrsSQtzLCznBGOa+7X1sYA1UTp3lHXbqtI7d4WLEgEWakNdSmsPMdwFuoIxspTOa8gsT1D+hEbR2CpBGGyFfiLhTBTM8UN4gCQgrLEBfMnOJABWKsv7sIUkDXgUkj70XFW+E/YcBjes5VEV08g2bH80424+0Hxkn+FWQm+nHTe2Sv8dSqO25cenMRSwhGDhiju8ugrfVSDEgaSsrSahIaRGh1YZWn754Pfut6YILRZa3P8C1Vbbkv63JuAwAYcJOFBttS3jflEWHgeG67lnwE7BUl4WHkdp4w6xpUJLh1YZWlVoGd/CSCzbYraVbILYYw1lcn4ogacvbALvswZvmw0zBNaMwoi0JkADqoX1wwhL4BCCJawo6egaHU3I7rgLrgR4lhGVxml/lXPsVLK0kdwQhmgtX8ACrbzpRYMSW2iFsH5MiNwvUTKAYCvv62Hosao8DAySBjuold0h/ssqhGigE65hmSFoasgMwQvALY1LjPng1rCF+k5hHX22s8IG21hzOL6TlZW23XaBBgIA8lU26BLp2LruLC2CuI2kWMDwhetBaX0COCUYN1dUmxKdXfhZ6RsYfyPNpsQAD2yhxmJbeIRruSlt1JzalFanxpfSP1Lhex1aHoFNboCvAnyBoTGs2pR2X5ebEsdvX4rQkqGl/Ge+/1ZPx3eVfxTgy0AMqBXbZ26CMWDLNgJ4GfovQ/9lQGDtoQgtYFBhhvBgxbcqDEGFIaiAQ/khqIBCORTJZosDHRi490tk/PPN5kMdwAaMVkngB8LOtw1rMM5UAqZZPFlhmzMr/DlLCSy8NXGj5xwJ3ba4D57gIoRRoLLCrLFZoEIK/kaFscMSk0sgcBLsS/atRl87PNOoujG+KVGvg4DxUoOzH4JASnR52xYPLRFaMrRUaOnQgkgKI+WmRH3ZPjO2lUxuHCwB9Ql/KMvFDCReeE4GbhA86rjlaNIf60DSKKpihBqI5WjMQT8y0ACatIEsSvR8uKwAkFeQ2xXwpHS/QnFQo0EYNQ93roN9WpbuiWWEVp0CxRXFNmnD6optVboDH3QD1KLgG8shba5LsS1hZuxfNDuB2coY+8AnfQiX4VEGxwjaCFE6hyVhaLsuQXLCvqJJHlWoElpV4d8iCwRzuXVtg1TvpAi0oSEUcAeh+glQOE4dtoTvP8SYYfesTwNNb2VlHwmcWMAlUCnCFs4WHvpK+ZYW/q2dl0I5XwWEU1bhpWF+DdAsy1GL024Q1ngPg5BXa8X8d3haqeBEVME7aIAS0flTMmf9LpkzHwMFWCMvPLK+Vm7QhGcf+UVTpR+LCvOrUOdEOqi4G5UuPEqruEBMHIhM9rda+gHC/10LIYMT1h4rAgUl1yVt/FJr9BQB+VgrtlbuWIG1LJmfpJJ72iytLQHEFe5xAeO34ErBQkuFlvYt6WlVcg+4DD8obQQTpF+J0JKhhecn8BYbAgRSTQn8oYAuW8G/gO9QAhByU9pULW02JdqH7LOAA+1DYNcr0cGBkG2+loG3OnxXhrdVeGb8M1O4xSgN829NwGHCOEwYh1GhFXCggwNnwwQcxhN+VRSh5XFUBQ/PRHgmQ0uFlnY9rdDwYZ9V4bfGP3OplNAKOBgPrYCDBRws4GA6tAIOVoWWn6uKu8WvuF/yCk8i+1K4Kah4QMEDCh5Q8ICCBxQ8DEOEYQjmIYswDBGGIQIOEXCIgEMEHCLgEAGHDDikJ6tKBhwy4JABhww4pN8JlSxDK+CQAQeKIQgZTfMSWwGH8oytUgGHCjhUwKHCOFTAoQIOHcahw5LrgCNw1koHHDrg0GGutN8elQ5kpQOOMuAI27wK27wK27wK27wqA44y4CjDOMowjjLgqAKOKowjbPOqCjiqgKMKOMI2r6qwHmGbVxh0BPytMg5HkpoVR9JxCLWozHKOGbxT6O7UGxS+wUKBRqvKx7yBHcPG0RvvrADTmrWqo+PdhkvCUYDRlzBFsvDAQNO2b61ABm8rA4HMVZmEAPIkN45jxxf9B/gOO1wplw8pffYjyL7KJkZadwDEkqOdHGz9lZEbvYW0vwrMMK6lN+VWqjLpT+xY5AL7s2gT596xCIEaqAmB/dM5LpRVMiFU0BoRvOMCeoq0XaKRAAUe4zyLIM04A6nXKVkwN6Pf2sZ+wzFhPZlgDkFrCWbHohqB9jqbUYyyEiKFb9AJgEl2pnKdZca6F1zorM2C4Q6cy4wpfNIHBJo77RPEJzzJMIAA1x1HimEaBaRao/kQ0FpnHIT/KaemcjS02rcaU8RBkrWqZ6W9CUUGRdMwpxpWGlUxuYUQ8dJmeJb+xK2AxCqMS4VdYlzLFEVosdDioSVCS4aWCi1tAZvCj8sUfjSmCChYQMECChZQsICCSf9bjKCzLR3elqFVuUU2aJAGH57BCDrbYqHFQ0s447dBJ7RRSegVjz2ZUL/+B7OcdMy9JxNj5NENUDqdhFVWJwFRDI9S4+Jqjc9GBrXDRqxol9jPnc0QoNnMfObSCbRPC0TTF7A3bVy8VCUrnwKOLZS3MK4KTdtF6XOsmXZR4iAGodmyUF5nQPcM2mxE5TYEGmdsjhnzCWWY+mHN/Zw7RQFdMTbMATOvMcHBOLskAlE2UtrHvmJSosdltQjoG3oitxCEYuOhoHMcg0nwGVrlQCnAvCyIsJA2bkRjvBECk9JBlWhaht8pHlrOSO8N/MKa8OxLu3sY2gOMm8DK2maFdLQtLLXZoRiuXeS9sRm32MK8AaBKDJ9nG4N+C3wnWGhx906EJzK0lHsXoIsAHS2ttuWj/o0M8JE3sA2mC9lOywBfBvhShVbAIAMGGTBI138bZr8xmAQOKTtGcf+NDbLfGBWgK9d7FWCrAFsF2Cr0Xofe6wBfB/jawdcBvnbwdYCvA3wd4OsAH4kM56IMs18G+GWYnzJgKB0lmTKgKAOKMqAoA4oqDKFyKBJmErv8OXiRMSp/gZmEbFRhs1EhVAn1XmDXyAS0Zy6uCkrhi5+gmdt6NowraMJ89QMw/XD3c5tkg3GAuO2Y5zzSVhKBxBrrtihdcRCAbDOaFPOpKMzzIOUKdTBti3BAIBrODeBCg0YZAg0Mc6c09t7WjgA3uHW/cO05EdYtUH5wKLtiNq71SIEn1nqkwAGA8GwLXSzcWy8AimNK2DL+O+Gxcdw6tsVd151vGQyRKrx1PIu74xxtdZYXV1VgVRIZlH0mQv9suDy0bPi5xsBoa8OyLmT71saLabTTCf9M+D5b9wzMscLTHoxvyvi32vI8sDXhFsNW6WfNuklkhQwO0vIqZ4fGlbK2dqGdURh+WpZ+gjBFxLXC2yr8AjVogFIpPzTHJkuJMoB9azAgEVQpY+M5KrEx1qYOv0DPDggspirDsyr8wviWKUKLhRYPrYADAxIRCgYk2mc6tMrQCjiMx8GKopiabGryqSmmppyaamrqqVlOzWnzFhM2NmFjEzY2YWMTNjZhYyoAc6HRiYeUx4EqcIHQD6xYTmjkPlIFXKhoRIHdaxzvsUenck4hOPts3ntVWtaA/MkqPj4BvvTZaZgfgvPFQ94wSsuu3oH2aTiKOYkCLA7O2M29ZG2lDOFb6DNAxoYbCyOOeOWe2QSvQvlQaOW0LG7zFgr/1np04Py2Nj/Aa7cdPrPpkdpuNoEylY3mwLfGf6dl4eDp0o/DumIAXmnN90rhnvCt0vXU4DjAxWTp37ZKhxfpxT7E1Q5NEOYhF5phiSr3FF1DKLMUmB5qP8DoC/dUTE05/UxN3+rpg3JqVlPThKaYsAkWgIkJm5iwWUHQNtXUnLCJCZuYsIkJm5ywSTY1J2zSYUs2QBwiwEvcAHIxFJFfp2nbAgncxdPB6TblaeNuNmjQt7UgLJmjUl/YlE1flwcjc6cs7pAZbfN8sVIQKkGYsIWqCmRIcxeG4P08KiiV2LIlPjBjm/tccJs8B/OBlU0gLttuAngrKp+lLZnPt7ZhADZUDtVLdOqX7q0OvbeHRSHQpOwf+c9K1J8gQ7qUPrXcnguwP622hjy3kMpljLNC6umpzeVmhax8w7iGKnyD+Qb3DeEb0qZ4J2see8Sh6PIPDHf7wpp7lzhkMOH+qpwlAjwpVt4G6Ye7tBSXz+2kn8L6cKx/2UW+CW+AUNr4pWe+6FJV+rhKDC5HrR/T3FylhZBtAiKGrWCnffUNDKPChQQooA3JLdip3UKCPcF6WY10MaxcWy8F7AvpIlKBHVjRAX5h+ZV2PgT7XYnp8nB8WZkAoBiMuizQTQ9ZPtsCY3FVOTWr6QPIk0a5vMCqTphrVqBU75p8aoqpKaemss1kXWPnK9TO/4GBl2ZpXb33FbxA6NosuIvpwQIgWHbDxeL4pNTJZAfRYVhHbyuVPX64DSGwE4LZx5ZFM5eHDNH7ClPAYX6s8Q4WscRiEpDyXaJpD+CBM8C2kA37pg0stk0sxAC9waIY2CqL0GLYSiYndp4KrNFYlIvKhSiu6oCgawzK9qE9Tk91QawNiVkDHfxF66pwOgZIuWhQDcoGxMyjWwmDLxG69lVymPWlllbDgNQOG3bpKloJ48JQpfObOiMqZPFYJqtcvjB8gSZn1D1dVR0vXcB/bFip85mjWIFnGpc+GR6tHbzyIGxeBYwbzzMI1WdWH4KvUe7GlvX8al+JA9Qw5nLRNdZKE1vcujaIFODZIFLubYrYTStgYpwvOiIxqUy67zjzeG0xHBBvXRSr8sli+Kzi/pl1SUEws41sBfXOiUMck7X8M5QiQrIW9MA6VAGKTYKF72zqFT7jvvfSBlliy4/c5UoB85EBik23gFAB6yuBtbTpXWDKwlHCvCiMGsVngYBcZozxWTD4nav+Y1MWbJ+tpxWwudhTEL5ceLv2cYXcW0JhrnQl3chLNLaCNa3kfv6sMgOUW1ae/qrCw6u0x1G51GWOZkz7zBg/Xty6fvPYeEfUdG3hNKRTm9llP9DTB+XUrKamCU0b9mibbGryALeasFn10jbV1Jy2NQqVIC6yAsnBQTChafUqPKKxYIb91vAAzEzYzITNTNjMNDYzjc1MYzNhbDZg3DXZ1ORTU/ie2fPUPVVTU0/NcmpWU3PCxiZsbMLGJmxswsYmbGzCxiZsbMLGJmxswsYnbHzCxidsXEzNCRufsIVtwCzXck8nbHzCJiZsYsImHLakYF3s7hJYRBOqJgi5VTouiCaYVwi1reuLYX6bYgvlf6yNFMsYFa4GIm4+d0wAa7RybelTGYw9HrDsh/3UFmvgLr4Gs9ytcim9JcrnKUBqjc2/KjfKIbLaJnPaJtjLbbq1zU4AixT3FikGZwZIN74SmxTeYi5cEKJr2WAJ2EA23AVbMCIoD8LQNQ3dc/oq1pZBQX4qx4QlvJCtgH3YZs7AfrPyFcTKGOXfGgwwgs1mPUHwX2OZmKtbADNeuCc2RxGTBtBTbFvGtzBkQbo0A9vSGHYAbgIcKzQwNAATm1h4hAc65u1x9wg5KSy3Rg4DndXGYyql+2WJbm98ZF3cEBVSOZQ2RAEayObhq0ppB8wyVFhxU7rvUYS0b5FfQuwbs1zJ/ho3hf2UCREeWns5HJjMJXVAkT0broICAZ7m7mk1fWvCBzagxTbZ1ORTU3i8Uk4P1dSckEG61RaKtjCGk+OeTsjUhMwqNsDQMC92i7nIUE41NOX0AcrfJZbcnbDZTB1ApiZkakKmJ2R6GpmNOcQJwQwA15yGFvYRY3pChlnMrjlh0xO2sJKsnJCV0zSi3OaaE7JyWjQ8Gl1zQoZpY3bo5YSsmoZWTdjwaIRNbyuMwiHEqglXNa1ZNQ2smnBV08CqCZeZcJkJl5lGZqaRmYkcrdXRNidspvRUzsyEzRg3d7wIyDhyAPuQTw/F1JRTU01NPTXLqVlNzTAyW9DANdnUnLCxQCCcTdjYhI1N2NiEjU3Y2ISNT9j4hI1P2Pg0NqtKwNj5hIxPyPiEzBZehoYJnXVJ0ujun1CJCZWYBibk1AxLxicOwsWES0wDmzgInzgIt+5EBCb51JwGNrEQPrEQPrEQDHz3P5uwyUAgEweBApX+4TQyNeFSEy414ZoYCFfTyCYOwicOwicOwicOwvWETU/YJg7CtfIdmxgInxgInxgInxiI1XVcc0I2cRA+cRA+cRBeBmTlhGxiIC4i1TYnZBMD4RMDsaqVa07IJhbCPQtJxKo4GEdgpWosqr0gVsFLLF6Jzhy0dYDVn6NNGKwgNmWZCXRBus8YFt4D7gJ8VqOCx0AXs0E5DCQNbCYdS0pPY4FpdEItmAVCrMP08zj8QWD4A5ScQjN2/Gs5/3Xs7xTKIjcbJqB4evxzNf957LwQ6LyAkpRLfdfzn8emX1HmsJfzn8dWRFFZ7Mtlu6v5z2NjlTA57Gb+89icI9FiAzbdeXFRWcx+LWMpX7IMcsnmP4+pWTpqXsbO5z+PaU6KHPY5zcmkqLa0E79oyZJzopMx0ckc0ck50cmY6KQlOggOWhj7nOhkTHQyR3RyTnQyJjrpiG65pPic6GRMdDJHdHJOdDImOlVY7IvOEjWnOhVTncpRnZpTnYqpTlmqgzi7+cyrOdWpmOpUjurUnOpUTHXKUd2i00DNqU4lZcZzVKfmVKdiqlOW6kAdXBj7nOpUTHUqR3VqTnUqpjrlqG7RsK7mVKdiqlM5qlNzqlMx1WlHdcsFrOdUp2Oq0zmq03Oq0zHVaW6xLx6Qek51OqY6naM6Pac6HVOddlRnFrHPqU7HVKdzVKfnVKeTwuE6I7XoOdXpmOp0jur0nOp0THUaqQ7qQi+NfU51OqY6naM6Pac6HVNdWVjsi8d7Oae6Mqa6Mkd15ZzqypjqSm6xL55x5ZzqypjqyhzVlXOqK2OqK6XFvnjKlHOqK2OqK3NUV86proyprgQqAhvRAtGVc6Irk6LrOaIr50RXxkRXItHh1TQLVdvnRFfGRFfmiK6cE10ZE13liG7xgK3mRFfFRFfliK6aE10VE11lWR1I8/OxV3Oiq2Kiq3JEV82JroqJrnJEt3jAVnOiq2Kiq3JEV82JroqJrtIW++IRhy9By1FYOJFBxfkSinElIGNKrHKUWM0psUoqzTv2t3jwVHNKrGJKrCwlQvL2wmLOKbGKKdE4Slw8eMycEk1MiQYpESrwL/18TokmpkSDlAiW3gUeYOaUaGJKNMKmt3C9NVLHP57ToYnp0Fg6ZIuM38zp0MR0aJT9+SLnNnM6NDEdGivoyUUh18y5n4lpzliaU4tyopnTnIlpzliaY4uM38xpziRl/o39+XKh/znNmbQYviU6tlx8sJhT3dUzByHHAe3bFEJSSrewTFAvMkH7NoWQFFAshB3FIiuxb1MISXW8QmZHgcXz7H1f0pmL7IVyYPAB/w+Dag2haWwzxZlUmyss3fLFHWvf+sIetoykrV1Wutpl6KApXeCTsHFT3JUdg+uTClvmwFZx8NVvwCGuhPtWSfetvexET9VCtPF1QHyNEHtTmS5dEJWOan+g1w3DJG0mFmNLVUBshgNUjFmqB2Jr0ksXXqWNSyexNZbRPwGXOQnMzYPId1eoFeMM7HCuS3vgjRuQeT0vs2ELpVclZpHiu0q7khdVVfqGcRVBXHAnzoX/ngnuy2YwwfnUFK4YCBM23hQ/VdN7PTUh0AicJDZe1j00oSmKqTnhEhMuMeEKZUCYEBMyMSELtUCYLbTpmhM2LEthgckJm+SL5TeKpPBeYc9x6kYNjGjG9CrjCjlhSK9wd2jYaiPchXYyf8EeFEqxhnEIqbd1NmyYnwlXecmolGnhy2ZaZz3WoEDgUCEUaznjW0t7Cq89wh2ClxIxVwbVrYZwsWV4v430xUQldyVPbSFiyI27qkg6VQud6oFiliFkIWnmgWhcAcjPsBVXoegMOm6FcEnKtlarCE1LS7YZypQyYYM5MVRK6ulpOTWrqQkRbFi2H+7pCE0WPgjlSpkI9UqZUBM2pabmhE1N2NSETZnQDIVLmdATNj1h0xM2PWHTEzY9YdMTNj1h02ax+mmR1CUr8JgWy6VM7FtkthyD6yAIzYbUVVgO1N0MpPwnttCS8oWWtLy6W8iWoQLnorTF/7SrAKZszUNur+uQyr2UeJETRAmpwv8AKEfiDRtYThSR24BG8NVod2OjwKo59re2DgP8Fqog2GdVuKAIg5BcE8u1+Ka/U4hhQSnflEv3C9lJup5SK7qUhOzgo3rB/YzckLkgReUKF2tfAhOKA9r0YrvJOdb9sAM3lcsWhsAcrBiKe8nmQWruKgxjiCjSHbjTub0oRjFfek25Sxxs0TQspAYFKzAFFQuGYWgt4IL6CQqr+xjMVsbAjALXCpv2VhjX1HgDEXBNLKCBRwxk9Eib0CzsXWfYrIqpyaYmn5piasqpqaamts10UZJqSIUVCKvlQqhFuPuJyY1yV7f44nChAJ/1y+IVEK4S33UJvQIjzG3kj9Auz6QwU+U8X360dOwZS31N+TnInuN6eRylGu6q8ZmrQnmi8iX/7NYRruinK4+HQV5lSCbFFt7dUmDJPA/PpolgzvpUFA8FCHDPLhaTY3g7XmETq2wBvArPBIyEdLc2qcoGE7gmXtTkmuDe22LqFIR7KntvnzC+kBzDIj6+yaemmJoyQAhV8ZgIZfGYCHXxmAiF8Zgwvmodk0UxNZmriMdkKI7HZKiOx2Qoj8dkqI/HZCiQx2SokMdkKJHHZDFhYxM2xqYmn5oTNjZhYxM2NmFj5WKdvcKqL3/ZPLTdWzOMzf7fu33z6eGbH354eNj87eF9a/+pyg3uh4dv/vbfG0/+D9/87aGwT5j9I+wfaf8o+0fbP6X9U7kf+B+6XzLu/joQzP2YuV8z93Pmfs/d77n7PXe/5+733PWBOzjcweEODvdwjOu5gyd8fwrpG74nhe9K4ftShMEglP/ehJnFf8JUF9ezCKfL8jSyKoK9CGnLrmFhbsEyMDu2ZRg8gUF1iIYR98Ks0EW6vH4Zivwy+eXIzAeLphairYmp5QnKRVTLGCIU4LpaRiGu6H0RUDRnEIJNTHqx2qV4/SAamOgSDULEIBg5KhqETEBQVJQBYVQ0uRBenKGkZRBV8Q9/efc6jqfzN4+PYz2M9XA5b/vh5fFYD2PbPZ76YWyG89gcj81wjQ5Uw2V0NN0bc42u6bYf2w/tqdm3NaKEfz3+VA/9/2j4/6iK/2HEx7b7cGiG9/v2PNbdronGC3I2QbCW0RB9EKt9eG3PYz98ft8/vz/tnyMK5hTlSRLjbx4P7be/ObTfHtrzGI1AkQMggf34YxeDoBadrW6EHXt+hlSjSkX0bKgRkpCiHcVvO+d+OVsjeQUvivUlPtRj043v9+3Q7l4Pzfi+Phz6XT22fTy/cOxTREYeWbxg14T+0o6vl6ftrj8+Hvu/todD/Tg09b5+ag/t+PkaHdz0RWAjSYIXMUuDyMg7SZQXCT+CDFqCwZI7ixdw/8HVWEgmnR2Lvpq4evjUvuGa1U/nR6YLuIlZ8PjYMtQhzjIUAuWRr2AIioNb8iRgVHRXqwKSYyXkGU9ooIY5gSY3q+YKzaluIy4MJdDvB8n59f7YX+ph3x+aui8U3zpibfvHn87x8VJR8oHIrGeE6mojfO7Pr/2Hy+Nrd/54aJ/iFdVfsKI8PpQNRcBeOi7IY4oXXF6vbDs056Yedq/bn/BojDcbNSmLErzxyB9iUd3LriZhgreK4gFuboJktBLncXu1HK9196mt+0fxrAuh5O5Z73eq3mlTPe0MU5Jp8SQbXcdSC8lp6FOHx7sXU1kJTkOzV1MzsVdPRQnRHldiYUVyLbo/9nR+vByibunssboI6Mcfu/RwZqSMlJmgfbS/i/z+3mQ2X7QhxNqxfO95XN18Hl8fxmP/sR7253091udd23S7BslvHOru/NwPx2aImI6hCIycPhGRV5X9vd+Ay3Bi1QUKQBG0RR6rQkcgIJRmGQSpoYmEGMhjimT2MhYvfiERqDWhUu7Fc7wl711A2cQcoiJPOHpTR3KIohbu/zcFm6R8ldguSEmFPIti+YE6F28cCb1sWiaUSu0bklIjeQryKHOi32ZuUqjWulgm54a4X0ItdRmbEUry7CG7ER044Ou6b5z0+Kr9s4npnoJNdy4CABn1t9lz6E6Z4kNEFzQF0yB2yX7O8qAlCO/fj59PTSKLTiv3IDxXctKQcNKQdGsgvU3VfSfdd9J9p9x3yhuh3HfKfafcd9p9p9132st27jvtvivdd6X7rnTfle670n1Xue8q913lvquCcTS2pEbTtThRQ3N+rdOputLnHzS/CVAk5lH7zO9cN5kPC+JubLBOhV/Kbu3Nxiv26y8Wllft1sFcfYeVut4eY9Hv7oOvfnoamrcWTRCREAQlYvLWTlpUrp/O/eEyNvGBSBp6SXGofjqPQ72LzVeCVtQyE7XbNYdmmFtaGMlMaREXgJ3PzT5hDhSLEaQ2X+92/aVLhkeKSxn7ogPUdpGaCEEFOca5yTD1ere7DPXuc9w32g+S7dtlqGNiKEkdjhZK6t3Qd5+PsXmgIE1XGercje3bnBI4OfEZStjX8QbkV46ZBwjPSxlfHthpTFQRTpInKf7V+4gwIXZ4OrTmLD1wLuE4YkWv5H7/LtHFSXEhN8x9QqfgKL5/kO18L1eUoJDtzQCb+ZwQ+pdswv3+HMuztwjOy5D6p2i/cNK+TaqBddwZ8Cnfaxet92/g/oAJuhzGZOMVpDMsOgEX4T4/t5+a8+PYjod44gXpG6VFvfp5jH1EktQjZvKxXO3qS912sf8EAsPu7uNLtJyGJHhara9fmvikMKTLhNPb5uVlaF7qMSH3giTVzMy0kZKYJ3Va1q/bmKPD/aP3WhvqyIoGMS45Q+6VhhoZs/KC1uGpGaLph/o9dx9hh5d+aMfX6MyAAM28xhRr1FnA7a4+HKJDW5MO2tyEHuINtaZwhmiOVBqezTBNmsueMEE7WnKr5WFNNsCPHz9uX5rmAxj88C+6TaxDLvG90fs7i/FjcqzBnVgEoHJ9QfsYGJZSuftwO5xe6+5ybIZ2F7EO0r7LaVn8cO5jRX8tcCNWcZZhjs3Q1WP7FkuHZHQLoxfgeIo9MdQI6QFGhLdiwnVD9KpaqlRSyqRXHv12SZXF25VEeiK6+vD53MZMlTRbZXgAwPlrvC7kmc9IC13d7V77+HiW93toLZRoTEqSfC2zxLFle8XIcENw3C8Nh/t65oR50FuGZGLSJ12utCe07rp+rMdYJyaVA5rtdeePsTBnSJk+I+V04+vQn2Keh0XyvwBSJOYY2m9IC25ddB5zUmP1K6ZjEsjITt3nj/XnZFeQmyuzKz5/fG2GWEIlA9QyJ8SpjkUkTWtRNNs5RRMOpRcyPoGFjeLNsTQvObW/eYxtjaTbnmZrp/48Dv3pNZakOXmwZmbtdGh3c/ubJsX7DLMFWHGPSoroPeO6/bA+nWLJEq4XvNdXUJ9OQ1/vXuPT6QskVIDzqT3OBEZNK380sGFnIm+BpGP86OmJN5Ag3WbkkUFFSnsZ2n+XYeRDU8f6NK0LZQbSX+JzUpAObXaD5jQMdayQlPkVWjgUf7m4dMMhCP18ujw/J+cP7a2jOf4EavubpxicIA+hDLhY8RR5xTOrVgxjuzskhEqbupYINQN213epNiVpUT5DgGP73O7aWK3H5Eyqo/QBnkSTrXFDSozzlOlnOBHTJoqjdf9z5NSECwDvPmDP5/ali1kwmQdA0wBCSYyDt3nOCXD9rp2JfiRVZTt2OSaWKUlHImW2cqzQ8yuH0YPyC7TiixwTSzcndZ/MiTkmrh36oMtQ8DjWu1d4dH6sz+dmPD+WQshqr6NIq4qM8sxMOID+kHSR1BSzXWyOp9RATLKpjE1xBP6RnOjkto98WLfZmMYFdyIdhZsH1D5dEjsq3FNwm+E5I9NfxkRf5qQXL5xuGWD9rj+eDs2YJDFwWjqhB/3WDIkhm5MOZ/o0e+vbmFWQ+QgZyv1Yt9EyclJN9JybMv2vKNiZ+YjCh7Hc870M4onJKGisymZlLUKodx9OQ3+qXxZc26RhOdOjevcBYyUTSPcHYT/V50ZHcYCKlgVIagEosZ99JZgwttKQgV9RSGFO64EOHNou2T50/DstADzV59giAXVA8hs7RI3TNFh/bs5tnWSPkJaOzKEZOxzpBLUQf5hISqmEtGjQWkbc7V6P9fDhH8f66beQonKMBVQ6O4XeFh7mYhbAeTfUp7Z7eb08PS5KxHSG1x0Ix6F+bg/1eBnqLYxqfG32/e4MOQ5Nh46H8/jYvNWHC27d7et4jL0upJNwXSgL3TnDgGPjHrkJaSIL0K7yE1Kb4f35ME/NmIrn5FGX2aDNmPh/FZ2dFjYUKYI8NePHpokFkDWlITI5zW2vi2jadOh00D499EPTxhufdvJnNv6hj08yTgad57rSJ5JkceWBeTBLgTDrvBeAxuy/pEOacgPcfUiEU9I1R0tmT0eu4lOgpDVn+hTo93HuHR0Jtb7L+0N8NgpyE9Ig4pgCMtE0w7/7MTbn0Vks9K6LJV5JjSM9GBOvSirU3RJC+TTUuw9Nor7izU13E8hQt932p/PimYMvfzo/+o+S2EEypYleuaGv97s6ye2FsiBh11W+q3ld92noP55TFkoyEtI68XQ5HGbzWNDpe/Q8XhJ7F3kORtaYRVCJ64Xa9WvevMhfP9EZWVpiuS+n+pzkGZE2IHK3RRKkojkQeeru6sPucqhThZCcmluGFmAe2u7DvunOaYJxQfaTpO8AM1axadE2MhLnICZ6UsVJDyNJortY4tZ0Rkaa1rMqDu/qbt/uk/URpHK5fkoEgL+KPYVFPuwoCyqxHpLHzg2dO42XIYkyIImFFKd2dRLBqeg+rZpgdvU5ieQx5FzRrGdXjw0EZaWhdmQ4Fm0Wc6DiWOyCZIvrgCyMCBoZzZPbT5dzvHJ06DrNOppuHGJLf0UK3JkNacEkfKekgwdWIcWhLxUZ9BmbFJYhRoFTkpaPaGbYDGPdxloJHV1G77bXGuyf8VmfiZpehTMjpJIuv0BKYAFavFNom1N0+FIQX5r9XKWmtQd66l+bXZKORpvIV5k7AEuj30nL/WJK6DLY9rAfEq2VTpPJ0MfQH9tLZDAwdNWjTH8uXawNMtLdleHDACUWmMhg0PUc4V07zoMs8P7au/t1SOQ4QQfdRFYyEhi4O2dySUkf0PQ5eKgv+ziQ516L8u7QxMKNJAtNBZEr05+m7mKVQNJK6rq0AODSJKcyn9iwCi+Rikjb3wqUpFsslyZAM65DUw+p7f1+3XB3aE9PfT3EURyCAkRz5kMfn/CaHlSkilPA0kmCq5Dv3379Zf98SOJtDF0Rj2ZTh8sZD7GXeN+RY8yMDSHFAVx0Lgu9/n28exWdcCeuGV7OigYwr+rrXLo9VFYDST4JV6ft7Nn+Lpo73ir4H5gWH43c7ZtyVz6L5+fnnebPmrNGimetnhqxV6x8qmrzLPaP52H3ODQvzaeT+xM7j0guRIsp/T6Rvkl9OQOj6eKDVZMRQbl5ggDLODSG7AtN+f3h0OwWUiS+oFjYrj8+td1cGaa99pluHY+xNVuSjswMF3UfRWDyKQYUmHhIuYTaRMAKueKZhQTwh0QVIykiw8X64ylhYRVd7GUFTLKTKzq2aL08p4N4noWjfgFX7I+n9hAf/4quRkYrUBbOsN3t/u4gKh5XUSOj+HOMwcZEJEmf5LRlHLAWVKJMkxSXkZT642loXsF29pZ4YkkBJ09daXQK3sB7tySBgNJju2CkPSQzUd2uOcXx4WSdnpnBdQ1sku6yZo5bT8Da9d1ChjEnzSS5Key6Jg46qsiVyHYIwKRVB0gr0GqHUl2IDMPJdenc7C5p+hZe9f0FnTq3+5kwxgr6yM72qz8020P/8m6uRDJGkseNIOdhropWajIn1QQyNVQw2sZwC7iuH471YQaUlBMyjHICupgFThpU6DrU1zDHNon1IB3YGcYJ4MAqnYoyZHXj7CZLHGpkgK0vy2P/JImAVKT6DdW7sAvgJEymmq7tkqfacbjMRMaKth2vw0pY7ZcoOR0YM5M4ezJoI6O/WUCpPY0UCFS0VpOTeD2pcmHLc1JSJmLP0qyG7LIBtlikJoPFMqZLgPMpVjrIErvryQMO3CXNMCcluiwkjJ/th2Vv+enz2A+71/D3ZahPr+fH698lDnTSjpCdnaE/RICqL3EY9HgDQ3wckPoPEbkQZj/HF+xFD7GGtObmygnBFuDxqcGKLOexh7K4sbA+sfdJPs9HExBg3/kP35rdbPkK0iWSPUZSPJdjHdsMrg68iR/d1H04O8+nBpJQwJmQWBEm+SEcnV8E9d2v/v4w/vr09y/jr8fXOGWbkSr02oICkrHHaNNUAlDiujrRXV2H8L99/7Eb+5lYwa+BfjnMd/6fsSBEivIr03DaP8/7yq9sew/zWkgZcHGa512J46EaQO5EBBzAXcc+UHSsKl3RXNC4b+q5hTr2H5qkwNuVEjc5aG8C+bm/jJenZuxnx8tVzOrk8VuD2X9oE1vu/Ulyu74f9mDQipVeTccBZFbj1MZsVpCnZkZiOMVGIjri0D7JQrJ7mjDrX0V83Trj5ySi3ZCqQe5AusThh5qOPs3MdVL/riJLRudO4Es3xuERhsxoy0RsnC6xxP0l9pKh/nhIJFuydleGmocmiQCqSJEiMy8IJTa/0ZZZeqERTMwAyWKHXp7x/tjMTDVL1Ri/wJwx9OfU0PUFLjOAAqEf/enzIQUo2PUeu3GTXc5jHHrPyUw2ry3SS4DAjv2+SXJiyXTijIa555VWu6I2z01S8+FeOR4KqsccIO8ameLfFmLlSUkPsMzyqEnTIT2JAOfUtzG/0WQRA5pppdF5nPT0rWbo7RvYB+c0j/B+XW/fJAGddHgQrebum+YUH8R3U0TzXF8OcUw5zdFJ/rdvnpMTCq59vH9OAEp8WpJEngMzD2ilqWY16GDfjDM7LicrpdDUjGASBmrILJLcXI/NcEymuyLTEujjZt+8NYf+dExNF6wgvfyZzeqLEkfTREoY12l/FLjkIi9GxjLQp8S+xSmvY2GjpGue00ythfIQcBVFctTQ7izaK+mBJaYekgPketXukv3LCrrOC2mV3bdJYWoycis32cf4zkJORmZkgfAEyBf1BHhAUmmG9k6v1iAKAOPIV0361dbDa65AJsxK0wHVGYpy0GJtik5wX70XJtx5FpM7LY9mjqn2vOvfkihWQd7akod0OsTlaRTN2knNYd+ez+2xPdTxLVl08E5m3heuHCzoDPnMTraAVm+ka96a7vw6Nm1H3XdI5xRmh4GG2pmAT4Zp3VCEdd++RaeBuTbmzHOdaJ/Rvn1LC1nT9SIzFB37PUkdmj4x27c2ZSssYymgu9LHUsD95T33fVwhlLSb8BB+TdMepG3G4jp9hNBySb9LLiS4Py0gPIjirtaucQ1JOqtBxf5BnFpT0VmUq5BilzxdKsurjJEzKb97+qTsMHkqJMWPckt0nPiLDx7fvvT9y6E595fB3bPl32CE3//2+NrU+8fxtR3276Fi4OfHJ0gbexwaiExshsddPzSPSW8VXUowQ9LHJGeiJENpcgsDUOIFNmQEQXauIPMT5uO5fmt3fbdtd9G25eSK0HwWgaYZRvcX3tn3l6e4CEJFGisyU/XzR/nRfHz5tPs50rlI+YNm0EN/6i9JGacrV8CDmZvAc+zRgnt/GtJUdzImOgPskgapKDp50ick07zyMvTRqSZpBYDu0ueuPsbFRSq6Uim5fultR/eXj2m20cRIMgTj/puqmqRqpCSXLsBOg72S0j5JMMZtZQKb+twmBdZpAYncb019Toq0339Ha7OPazFVdFAePan7uIySot1tJJsFGH2SPX5/SGZ8H+zjS2KLF7RlsSBZbvMMZQST41/RtXuiM3URINwF0SRnCn0ykZu+acfXWECqaJfXeshQc2hSIYeT+jZRsnw9j8BhScwVKxeBp7LELWgO7SmpX84YrbTTi3X8th3rQ7v7zWMTGyPo4gY0rKdm//6cJIUy+naezPjQvZtWNSE3DM2IltzE/PqInPv3g3865Yw+bI2vrk4It4gDLdbs/jNMMcslUTlPMyjp8YbhV/bghwVhIAP2dOjjOsZ0YfAMcZ1iI4uiTTekJbjp6kTq0nTSJj0ggJLmMNHuEXpIHeTLxN5C+mijmS6AScny7tDiZpaexBiZD5nhAd2MVgVZA5Zm192+3w1t1x/6l5hyaHN7pksvaTm5ggZDn/4IJtZKSDk7VWhzYM9JOQbGyKM3N+9jO6alD+i7wlbPXeuXTdSB++9DaU5pvbH7bcHNMCT1OUlri4/78UpAcilOLI8u4jrv6lNa/5AcNgklln/IYve/4HqkZkzuWiA1IvpavuYy9L9m8f3XGbcBCeat6cbtCAUAxi2cG2/tPi7AIEjbFs1j31LJR5AFomggcaUEOpWWpodP9TH1aCpSNMocPJ9qyFqKl4yUQTL0aeEkFw7kI4yX4UAOT+ptqMhrpzKc4tOuGeIsI0GH8GfBxDEgkhYaaVYRp7Cy63smHuRt4YfNp1NaiZoupZDrSZKCZMh7EmgbMUAZkrm9/76+5tPpUKdUTDKldTDxFV9OYEQ728d63L3+49tv69Pw009V+15/bv4hiSNhkpbbMuzu06nv4IxbuEWUdJFlV6e/jmS2sCI57Cr+iN1MOHCxZbqpBJ1zd3ON6ubTrIz2dfnKh3mgeBwIk+bJZHDs2qQQlryOSL+tvp0HZbMq0pBgEcW43xa/PIc4y+CStOi8GiEyBx+5sOV1/DmbV9bMgEyyB+hkEKoA3tp6OdN2HB11FYV/WxB+DOzdr+YZIrEqSLEyWsy1CNJSIrRH39Pr2p5I2IGgyyERpQbXM14dpkQIJU/dxWykLNx5rB2pnqx1MrkciToslot23zwV56b5MKb3fZVX5SymdbuJ7gK8d1CjOfGMVmQg2ipxIEwItnoZ+svpfNjHB7uortNVitvCTJ/rWTqNJINz6cV/rts4E0rRFmlPqeTueq4Ph6f0ZglGVm6nD5rn+nBOg7buP16f62N/OSc5a7RQSEqpz2l4x/12/0X2SO2uNShJRDbFu2gwTZ0EqpN2MFIkfG7qtH4jI69sWbQ+ZqAmPlcyIoG0RT03abrcvVLmM0ToJSVtSVk1Q8jNGHuvSjKkJ6SJZkY17l7fXYbDP/zDNk3AkXTRodUD4Ln5GA+UTDnlwU9GsubntjkkeSrUiKO82GVYia5KF/LNcIH20PzdQg67oK9fznXokBaM/oKcAwCTGKRIh2kWSlLR0dCeQHojI5S0kAzpY80tVhLUKGkHWWZMXZplrMgyvRmKbruk9tyqwEtz/7aLb0VR9K3YmQ4N6WXyeePE/BpAOub2OfblliSfyi3ep/Qer/sTop8PNf475iWkLYc+n3q4VDs5WkiCpDlRv3A3NyNN7j53kx5e3yf7TdLAaArv+7Hr07QqstTiWnz7c6wOkGpHcQUnFK8IRfIfFlWSu+8w9gIidZexj7+YX9N4Rzn1Z6hxMqZ5FCR93DCBAC6N7KELxtKctB+Ol0Mi2tNVr7Ij/Jgke5JhlBlqTS7zpMN60ht8fBQ7DXtoUkfW/TWpn4fm50vT7VJvkaDL7GWmzAGLZX26HNRqzQsHcEwrXtyvAz4PsdWCjoR22ydRitPNmRYHJirP+E023R5Ly5WXQ5wsT+a/+j5FlU0okInbjswGy0g4AGW5/pVg17fM3Ga9e7508yKK1FDd9Kb1fTxri/ZILnDCI51lZ3Dynmf6oHewkqt+1+Lhcp0b0oAkMhCMJPCXpmuGJDOSdFamwg3Jlz3UpOxZtne3wDvU3culfmkwp3Zokqutr4jqNsuRBxvzsBU9eK2TadUm0qRMcx0P6S3NDqXPI3IzvzT9sRmHxMxG37dN0u9L7JHmpCfU8zKSZb00Y304LAclVVd5FI493rCMkxtmlm1dXeeb8Nvs7i9NYgMlJbPVBCoA9VqfkoW8yoh8YMVtJV1eGiwKcmi6l/jqJkmXHKe71T49JXf2kumeOeJq3+Iyu6wg77+LBUgC2rweN03ypHDycuifkhQ9OlRvBcrh828eI6nQkOaoDMH3s7Aoav/RPAHzM+Ke3F987eWUhOff3Y1ZiC+9QJleXNLLtBg5mAy9DPW+TUM8SAFt9bB/GepI1qtIvS7DuYf6GAdWkPFTWSDdHuoMJ4WVaVmBNF1cgYq9DXTsZw7WKb4zjmY8kZy7DKxNDbSkES0DpI9yVlb054x8cTnUH+KMDjokIBbx3UhDEWr31+fbUdo2pWWnUWYBLtn31zjdmjaWPVwJw8uAvoUkr2b4zWMCkw56ImFF15xzMuB8tdTGq/g2cWxysnoKPUU6nqLscLJTVB+eY2sieWiS2+i17vaHtMgzyUQd03qIVDd6RyDwWTVe+jIY8mR/jWvDG7osa6RULYN6S8KlyUmLbFSLsJo6qQxy7wFmSTxWmu7nqxbKjz92P/7YzYoA0kU/8+DS8kV5mlizjQHMmdhBcocMSVk4xFgZWSdrFWJiRL0tzCAL9S1J8qrITFz6YAIwnz827cvr+POliUuGVF8QoP+KoOKhUkQbD5XeUE2b3PzJCrrQGCngvjaHUwxGkIG7GZbYXIb2PLa7JBDhfjfLa/Op3je79hjL7ozOaCQhtft9cq8WzWHpkbUvsbhDX6mU2NhpGRNgNrEzSdI3pa46f9PSr4xOSHOgfHS7lzfonnbnj3GQ5qntml3fNXAfDdx41D2eG7gp8fG5bs/nx1kZWjpmkeZZ3fnjoY2yfRV9UxQNph/av0KZ6ZiQCjJPJ8NV+vS6RLp2Nn1qpQ4xUrbM7NZkw5O2oMxYhub5tz8++DV9OvQv2/rUPn/GuNuYsRsyRphWLhP4rrJUM5xdcQFE40J9H9vnoT427+tT+35oXFGlHx++da9jWyslL9AcMu7Jues/gi5/HpsjFlGpD3DJ5/h6PD9iEO/wCK+OzYCXD/748K19GvFGkmvTyx73AvbQEeq4QAmXqZZLfWq/6U9Nd27qYff648O3Hg6aEhPrAyto8wM9G7Pavyt281jqvEnfITJH47iY7PE9jqdvHh8P/a4+vPbn8RtRFMXjP16Gw29DLRybuABTF5EqXR+CJtVseZ19/dbu37+2h6dZifD77zZavFZ8fO0P/fHzAtP8Am43R3Ds/9oeDvXjaf+8/en8ODSHWblCThacWJ20K0TdT5E5SGkyauQeqKf+PB5AbHo81cO5GR7HoWkeoWgGFCOJF+T+BM4FhLD3PnUv4e9a5fqCvuyWZuAO7evl5aXtXp5rrLPyCAVzgAckblS6Qmhmm098pvsMl3SccXC84PKxqB559fh0gRrC5/Pj2Bya1N4l6eg2WkpYSeIYLk9H8/Hzx+YtdqMKMvo74ye+mrnYwk9K+TQNXI7xfZmCvMmCtk3EFixOShfelrNaVqTdP86vKaUrH5Cr0u5/++ODzb7+8eHb3zzOSnBRC03SVruHxJnnSBvKFCu9u06Ih5+GspGBw7TC1e6fE1Kja6pmViIxl97PZtrnmN3eEiQUjtf4CtoruX3NnriYpZq1H1pBLKYPqq80fbx0/VAn4WP3excQzOwad9KCTiqA7bGOy6xoMo6drUboIbDEwnNnAY0c8DjnnuTBaUYIdRUJYVheCteiqR/ErGPqMzCkHE4b1tsjSNKJXYu+2ZEUEiycdz8+bB/nJbqZoHWyDN0jyIRmSc6YhD7kJ69Pb3xhdF2nPJiY7Ohk3zwUe3sLQoGAJqjymBgG9bXX3QHLu6Pb42no0wAFMvYo4611gOKzlLSJ0MsZ23tWvIBudxBldYL2shJDuerNWQw0mu/BbJZ+2+0Ol7TEB10cliYFCydJ1r4/OMXCmV2/TB6yifSTkQG6xarq+ey+ZUAgTcwSQMgyxJke7ZNLQunA6uScjuxrWZkPIKcVk8naHdkxf0pqJtPXdOfAwKX2ib6TiepcNVEixNTdRVpScz17TgwytLrimXRm0p3FKTnVafaV2Z4O1OO+GWu4OBfqY9ZHqM9+/ju4nGKGR5BXBme0O8QzKxy14qOm/Xtt9+xupY6NpII0TeYmE8Ow0yzaleuWMkJDkuBLmqsyXWrHNh6YoW8ro6UOCyYpIFaRXhJa32y7Q1o/iJEerxxDOsX1NckqNmnWXlI9MbfPTpdE7qPjYGgBHO+Fjcd7d6Hl5NIPJsgo5JyY143NS+pbpeWx3MSMUOXuZb6d6ZL9+W7Ncq0rMqstdxyPzdDFsZmGLBEQVzMi4Z2GZpxXyaAv1MoPNK6Xu2J79oZlf6CuiV4mK2It9mgAe+hbIvkrWi2hd3ViFaQkjNisno4wvVzSq/apUJmo9hmhkub651lmiSFv58js7iQdjrx2hGbQSRgiOfdujH5kD3l5PcvtbpwirD6ZqDX3xnO0Y1K8kr6e4LqnFKgkwHH1OoccMBtXnmTG3G+oSS+LWdG3MmfseG7ioCpDsogMRcZHtCCdGyRF/lQPfcLtaPmS5C0/1W/1eTe0cZitKfOyR+48/qntkksPyOmh1z0OtlW05JwovplunZM7jEhxj176ny7H08zge3+EzU+XmB2VdOwJufofkju0JO0OiAxwFKx9e0wkDjq8lZzjD028S8lK8+sJOR+az6fXoY5DGQxp570BUHID8/2BVh+azx/7OFGyJN1eGTBdHFxR0tuWXP1DFB+qaR8sqZ35xKQ4cGlFHFivW36AgohJLh4pjZNThFDiwtX0RZsZKGkSPH3FDA0jvZCdZUqb5eZlTAwztLOB5oqz8sRkWv+q1oSgun5I7NLsKvfI3HZZL0JKzCXkaZbtUHIVg6a1J5KVpcWOMqlGmcWaB6JWX7DRoch8PC10aVp6WiBuLRkSTca5IQ1detnzWuIgPctJXXEyuICtplAdmpf68Pjjw7dplrchLeL0+byUanZboZqcDHqAPLYhtc6SB8gaoCRomjYX0yoq3KaVlHQp6IvcM/0Jl3LFfSJTkjKCJAAb6peZmZ2cf/poiqUIJkhDeI7g21g6ymctL0N4GpIbGBkjo5YzFA5xQR9nQdWSDhMl1fdD+yE+sEm7rBOLvbOGqrOYaOwZUmk/zFSw/IUUWRf+oT2mVWTuLwCDQI71p4VqS0zQMcorvRr7k7eBJ3m+999UlJpQDVnNOVxYnIUVF1Jj11lKD9W8kF+WKLvmaWjqD0npxFsC/Sl46V0a5GGXG+OHmHt/uRsHYKXyraAtERnG1nYfmtmtZvdn4ACcNIM5b2PJEVYs2tIXmgdD0kNsjUwuSsn4cQBXWjNlBdk6MR/qYxImTAfN0ER3iBbFkPFsGRB9nVT6uDIMPVS31UAGIO/mt6ZzuoY+vS/7OvGcG1JrychBCCW9Np3RN7/lO5Sc6ZL2BtLE39f7REcgaxXlOrNL0+TzGS7LQJISXVfmqQc5rxyc7c/LrGr6/XcHH/qXWAAzdNhMZsm7l/SqWnpyMtyu7z+kTlvS2pqDEt+BUdHOTJpJ9OeEZMgSf7nJjYwtWtxfTfXQf4xnVjNSIF0tr3FIjnByjTIgxl+nByUn1VNyVBHrFGS2mT8vgh+CBljvXudXztxr+knv0qSvTry54jSAHBOwZPxdpmM/JbWwSeeiD6VZvQbnWB+SJH5FpxqTZ9ix7trnPi6Dqmm9K9Obrj1dDnM3Ku0Moon0WHddwo8y0hytxx3r7nNCUvdnMhzr4cO+/5hcoZBNep68nqvCDEC/RMZ4RUtIpEPoWJ8/NPv3UKw17uaVHf5B3SaQXMFKzyfa6phZyrSqMBnEQVusEcisWA5dbDWJ/iVB/nypz7FaVF1dkD054NYmLIB69//W54i3GtLPTnv3jnVshmKMPDJydDUeL4dkJ17fRT6Pe82v4vGSkgOji0znAA1tYsv+gmp7qLiPQ1qPsaDrNtzATj+N/cmZA8Z+4f4QVtDBAzR/3bVdot1q+lZrundNnd7Afn2ZyX2L2dTdbCnvl6cBTFrXQJOGxPViF8emPqcF1Vnu8p7MZEFYZ1wXjazJQouQx2bYXWIbnqLvEqUliGZIL8G9Pwz52MTqmKCrbmRh2LTbiEORNzHcsGea8bWPFU76UjVS+7BQEgMQGUMQFwsl4A1pTAt9awqd2nBs9/vkwnEyiDGzcm3XxqYGTWcDknaUY/tpdtsAk3QYekYm6uNIRU5af2ielloryEVPfb9eIYgCLrI+YcS1TeMvmKCjlGgTLcKK65Wt9Dvbr0tS8f/6ur2H6jb/57GPL6YoaaEmDQW8Qanqk1CRlbiFKG+K3hY22zqiIbLXPkEgMu4tQr2kkutVjo64cTLnIgrt2KLPtcthjPw/pDeA3vMAAur+QLAXFADv5tGlV/rMg7mtgCuCPR0gZWGmZZGdpAcaXxFOJt7y1XCA7j2ONXEv3G/L6t5jGvc4uwKVVLgzsOo4y1PQt8aTywifxwZecpJWr4eFX8VZJpmAu2TT+LziUIWC3PGIZVPHMa+Cvtwi093xMiTmUrqIYlQIKMs2wQ2VVARiBW2kJplQ18Dll/WQlMAy9DXZJOfpmvTWhSvHmLjtMriuSW25jBSrMjTbvMzKIEvaU7pqu+rAb/w0q+ZAkkNuus+zDDN6gDRVNUnKNGlQzU3S+LEf4nu7OBmSvQonuS7lXk7fNek2YXQAda4zkaFZkILdasmtLrlsiUz9iE/8RVDpiXVVxrm6cV9026dDv/vwru3en5OoZca/IB6i67a7oT+f3W3bC1b+Lzh2uu1+6E/9ZXwHf9+fhv4pAXp/amHXbUOV7uXRf0EJ4K7bxvcMEPP6Bbuq24agvnfde+x6Mgf3G3sAKAYeLHeTrqWYg7gsWxET8UV9PvXn1qYKXq/g6TIuLeIXSCbddmgOlwTOF/CMbnvunyGGJQH1BZJgn5wQpJpLKqhdolZKOix98eoeCmZSOVvSubn0MdjvmxiKoQutkFYKgJKkCd9fZLFLkkbpQisZEENaMpLO084tOYCZ1Uojw5Np8QkBtX+d6SSkVLeuTziQyXyb++9omyCd6l0K7v7L0rs+TkclQ3LTujbptUWZ2Uyv2yL1lsy2GVNniaFLMGa6cok1RHLrZbSe/hLfAFPRl6PRQNI7f0gtzE2ztzbRHOFyfEquR6Pj8pPUzFw/AepMTL4/f8kC6p8hBwGSRs5jv3ttkrtq6bsqcyIdQk5WZE3xp9Pqu8uxSU2tpKWVJjQLpU4udrrFpLgErn/6qUkcN3RCmn2iIrqhzwALOk2DJQ9LUk3vd7tL6t6mdXRy+hFMGjNN3/NHand9XEKMVD7iajLUpV9plmpSI+TmG/rSa6yoOwM8TyVTozM399FT+zymV72s5TfRVpk+uWv0/rLTqbVv5Whdvqt8mZNdWeNXD+a+S0t70CGx9P5M3KHVVUDAQ7kQQrdugASQ7/7n/OYhRuZX5mDFJiVJGw4zMGw5wqGp93ERQbJITWa6rmC9g6SLOC+NjA3IQJz3i4yuyUA5j/XY7F7rLnZvCjJlLwMLDL9LoCj6ugnUO2jG8KhThYZ3aro6LldakIFpdBiABfOrxMl5r7WpP6FumhA5LbPTBHoa2zR57ypSiBW3OSQQzLbe18d3WAUoscWQYZsrHUvUG0FfcJrhuQBoQSthdM3BlV61f23S8Mv77SweUhw1QTszs+NLbldkBZ3nGo4+mkKTiusrytvSQZMUy761pklSRk6sWyb7IbnUhLR40VsJQKQXdWbzIJahvNSdo7JYu8zc5EYDa1/Si8k1nZtBk8bsnkxSdiFFgntEpUXDGBkTnNkbl6QIfUVX5acn8TKmiVMlmXKQBZPUniINy3G5m3Qmb6HmKIhXkMEUGcp5S1gTI20lN/joAFodq9wVnVSQ7dRb2yTXaiyVzX47/Sw/jM/8rz/JOE7u/vyMKJKWkwe1101IWjx9O7v7hxbbr1jiIqwkk4yuVJjI7d7v6xkkKaQAhqGOo/orMmuVXrJTWvrX0JXfSSX5VLeJx1HSV07RVHiq4S6NiXjqYbftmvERgtWb4XFfyJLXvIip9N5TAKSW2UV/kr6L6ua07wB4a2+SincnzRzXASbxkSuVlsK9ylnAh0Mcz0UGF2ahYBHI+BS4Ek0fxG3R1FM5yUTYuv9AWbpU8v7sMwvltRlTExVjpNEmO93z2ynvr8WGN0UkThvSyJXhG0NytZaknRrZvqRZX6TEsSAxEjCTGn9fQJFju7sc6iGpKJOr5JLpz3lM43eo+c6wtPOYVvskg98zUKAQRCJu0inFiVySo8y3lAvcb/k4xdcRcLLcyFpOOOjLh/avs6QPUqfMLV4z7OCGoSQMmyxUkTkgm+E5KXuj6Utych0CMIn2Rq7humFuXu2qpM/cVP8KIj69GPMaWJq8p26tbPgNErHDN7/dnI5VvwGou9AtEupJgLRX+tSemlTFqOjscZptHmZphdR+i7LJSFhjEvrDCtrNTR8JszJRnLQvZYDEjlJNZ3HQe+TQj0nMmaYrstJg+qSurqYzJ/JAkhyeL4GSnGl0WShauJ7f1EaG0UT7bxmYDXSJTaR3H7QhXCammi/1/i+E3ySWyqvIcHNbTqOHmSYX0UaazCoCqDRI87ZCUQS8c/sUpxJoWqxfN+SF68QiRke7BTM9w+CqeF0lfdxlVtQBiiUxRbqxcn2K75bkV4Lhg7rNan3qP84SW++35J7SxH7GyRKIK1CeL0mgNXko0Rx3aB53SQgWK0ipOSMFDs1zkqCZu3qA3iZDc05rh0s6P51ecIAzvM3s+JouWZrv05Bcz00GGqzCSSvi0dOUg/SWqoOktyOzZv1T/dQe8GLixDzwBVnzAdzYpomrX9yzMb5ZWq7LcbnuQex/RFgkvJnv20cjpAZvMjjCoUsTQUiGsQYn7vj9p60FM6uUt3rJfHZCf7KXY0SLTVeKzJBzf2wTuwRJNG5FTLwwIcwjtyDHpOA0SeW0Q/Y09BCctktdQDSLyk7gqRnS3VLSE5hh4wgpMVjQt3lnpICh/xSnxpDeyoy0eel242Uh24xMs8kcLJfTqRmb+Mw0tJE606k4qZGW52kS+jz2SRo0Y1+QZObgPIJP/hEBbee3D9MBgCTcny91N7bjLBlI0/HCJEkhrEvs7C/oO05IglqqlZEvSLgMpZlXbaCv5cr0pokz80u6rNKd15fdcInkz5dZEMbdh/bPl378NfynOf89tv/+74T5dQ3S+9CfXpsz/DvCQV/plcORMDhGTja9dW0v476QQRTxJNNAh7pND1VOFkuht8qQJDsyceX0eyhvu90PgCzGj31BhAfAml3lc3U8P+jbkpkdnHdJDTJGH6j5PqXJXFdKdHmb3oRQlqfp/jpkACwui1nRaaCrNoMhjRyjSSl2QOToM6m4WZIWT9rCAtePRLk1kg7FoAfX1PsFIZqTroMo7pOCmHpsSBGa5IJDU59OsUpf0ZfT03PU1Oe+qxMTCGNknajMmjW7pk31MkkeU7TWCYC6XVo7jDw0SYHYwbEg4hOYjEnJzPcuuUGC5bLac50a2+c2Zb6kHJXZds2+HdKIeEMGY9Ey3dDsL0l+jqYTyDIj218WFJn7Q6iGxl1zOMUf7KFsOkjnW1cAY9sPL49xkLgig4Ro031AFVfFX/F0ZCHFRzVdaz4PKBbUSYtkblGTxHoyiChHYS/xzsncJpkHEtfYo8PzIgGGgAZe5ahTtBvp5oiRoTn89seHdtd3Pz78/UucZ0aOOUPAthTj+bWNi2mQLpQ0VY1UKCzoWDFRdDXqzDzitXSxiVCRiWohGirDH+f33JE5a6t3CA3NoX1p+0ucq0An++QWNk72vY5qfzC+AyuyVwOFSFNXCJ0IkqOzY3KRtSSj7HNbCqDElEXboPJgZhegUrTkFbPMsd3tk8AhQ+cyZxhXItbcrdwNjbV/L1wrSZthHhYslOvA40OTvHcrt58duGQdFF3j9AZm5mDGvaPNtDdwnZ8vSeEYQ6oduaVFMAmJfMnZ9vOlHZrz+5chqQHPSJEsd8qBtjG7Nej+koUWUDw60myQ433DZcZs6DLRuYHNCw7S1TSi0scEuJnyya8rtuobNdnm3O4vsWOTlAgyk33uDwkTZGSY4peau4fmfOq7cxpenz/WMrzDQktSgL9g6JdDElaR98dRCZw09JT+6OCPdYY5u+OlpG9OSs2F2bzTZXRQmfYtvQGGtB5kds84pDooaS/PjH68xLeAlfRaLcaG0VBjpUXRvtTMkQ1wEuNitgjFdDFRch1JuCo4zvxdxvrWpJdB3B/GB1CGxIiZuzeBhvOxHuL6eRUZ1ZNh/m3MaOlrjFbjyYY0fsTQHlv6jGy73eNrd47sl4pkkCwHKD4ZSW0jNznjW/thVlpb0GGMdAXMoY/D2yr6ZqZ1y2Xfj+nFoIIMwqK7dP75EhfxoaNJSRiX5pzMDu1vor2hw+WQOnjobCR6veLiI4IMOyKn5FwfEx2V5E7klJzr4+kwO4hI71lmVs71W3KEl9d3Bd1VwBtgLV4ZdH++LYBK7ICkypyHkl7Qc7+t51ynqiAna2SSnP28w/D4WDS5n7Wfd20avcQE6cnN8IrzLqnwK+n7D9JYlalgRR58tICSvs+XPIQRyqyCFxnORuvzCChJbiEnPwyTFDIAXGodoIvnr4ZanndDoj0Yuiw8eRpZKBGFlWQBLkYzBARzGaI9bK4kqKkLeWUmAHr344M3Vr/uPgxd8/EMaZYRfLrKb368aT0p+gTOwUkuipf0xqQpbKZPKvoI946wlYyE+0V824vEZE/f27IGJ1bY6Srdq8qihXceh6ZO1v3K5MhvMzlew3r3K7iDOq3bSxYNoTV4C/St2Y2ws2deMXVN/rf5yWcQ3y3ApS1FK1P5sYlLgRZXfuVJ57qlhx+bp3e/WqhoyAqSbmidzoFsP7SnZt8mlyFeJVtMCtxNXfTw3v348FP9Vs93LCtI6xatKgLwT4kMVZCHS27Qu77bJ7fqGrqaMc2J5tGOnAzgyUCJxUuysl0wl2aYWvNh7E9x8G5JX6Wx6rw4Ny/HJetzSYdskZL4uTkk9dQkfQ/e6uWjFlpiNyAT4jNnOcJJhQOyIOMNwoEFGM9XRTOO3AijHMiKvIMgrRFxg+Hi3BwhNDAiFE3LpWWMICdqNV1ykcv9JVL91ccxxa2Heuc6Nb9LuSQrDM5Mdv4cN3dMA+SfJ8F9BV32P0MFQ7tcFpWumZaZ2DRoUtKUnqHw4S0Nv70/Aw0zH3bNVWWGfb87bx2Tx6CIy7kZHnd999y+XIZm/77pXuCG53lsbEFq9blTIE5souMBooKDBKhZyiQ5r5mlfq33af2VL6jnfH5Ni67Qs5Pryyw47/6spPNrfzkkZk06Lv6as+Yu+II0t/TCMEVGkmfouN03T3EAhqTv5Vpn/BZckpdxf63hc3tsk7gQTVeUSopiTcyQplYLP4kCVDQjUMsoPHdM62ESOC+Hse6a/nJOyihIWt7JWMHa5HgQZBI+bS6H5Jc4WLCko0bIK8szZJoEO5ekyz6j3ac13hjts8twliOUZomD7ukLJWkwi2Xir+8fuuvi6nN/bPCinmiS6Hw8eqaThGhJa9CZzlyGmKTosnxpxVra7ItA0ywF0nRCS2tQdTxiCHTcGcEQcsCbXZKcy2ira8ykMyQHUJ9jAVOSdQRukPcdvDQDkL6I94YdamHGSgQnQ19W70w5n5omuRSRDIbNCEanJjm/yfJAuek6tHEAG32yreb3I7CEiul0PLNOGgBuSSRnxdWe+/9au7YdxY0t+i88JH2kCLBpbifdkw/JRKMC3LgGYxu7DE1L+feoDAb2Lq9d2MnTaEaj5aKu+7rWnS/cE3OwcNYAa3yaday4VNHDfr4PrA/si2PpBXBihRk40AsrCB+i24PXJwNWh8I4/ec9ci6HShW8KqRHAqhYv9/jxltt4mpVk/NVjBlqAQPvwgYk4Hqo99uqqNHHu+k+m8+GuSPq3EPXEX8mOOTFVxq7n4HHQDLA4GfWRXQy4zn/TAijBz1+ShRWJs9afgrO9wg3KPyMrk6n5Tznn1nC+BgulMYf+Rlls48o4B+ZYde4x6IkU/VRlGNnwsb4Wu6xLOmm2JfFgX9ljp/MHotyMj8P0eHT+QiOm2GLHn/kS5nJ4ewuSo/sKfzI5+enyQvjbC98ueD31tRNUZxLuXMtW2lUulEJ57YPoL0nvA81FC3mCCERl48CrTSWwo5FOGEPBfXDIR5TU/ImZ/EaGxYmm2MWa7+lYqI909qcwPcZH6AahblL3YtorzBvI6q4DR9XcTyUpg9mPUQMWx9kMl51NHlMRT1pehCwl++2yobX+U6gaJo0RtJdM/dEvBEGcyi7H+Qsp2vfI35msoLxBC5hcl+6m3hZRhDA1kjBOGtJ5Hav5i4NL6IIcOL9elKvvsCAOsyATKXppJdsp3oMnH4L23oiEG3lwskobJlYEF7T8Ir5OvwxRAtIdbvgjxPXKTeKzpLA4CNtmyzdfltlyeZtdPkLmXhIuiEhVmtHETgYw+C79EZeoBgLU3eymRsQj7N15yYpzZkGFF8xYaGXULmsVo4WcI9sQLW6SMyzMwON1wWeqGpVRvThX+D0u/S7TKGcFGkgcCEJv47GW16xP8ZFsPGhrrbbqGxh+cMKyoJLeQGzarr2wVxn+zyJ2rAfiB3ucJ5XGGK/fB9Yk8+Gy7gGCr7l+vyIl+9OmjqYYIpA7yd4qLR7c3vJKGoCyKgq7ao9P3mYM0VC2auiJXM7xylx4dBYMNbEgbOu2G2rckv9SXNn+JISDknxwavpcQWN8LNMubPdD1TRCBonGOicGpaZCHoQERiHPiKE7UIeFDrFOIHnJbgxisUdMGeOhEGtCmgVc8VRoMYnfWrHPGkcXYBPjVG8izGYYH4ubOUZVWy0ba2klji0ErAlblSxZarzYQ9VOKNKKr85xq+ev8rEKFNWe3JVTXHnLrwzjaqYjGkwhq1duKLCRGodc5zOChBWCi7Vh4radbBEVNhDDRAreJGJAdqR0jLjhRkPTvPkejhmndKfF1Qu5YZLhDxALxtl2KPVQ27+gjVcqfXuxAJQQQALCb14rFQ1xJveswhDk1l6Ujau7lmPK9pXVGQtrdfYHXka8IcjBxMEMDjpg2V7BGprSDgF0+nDxOPjG3EdLEvgWTDoK1FRK8qZ1XQPIsFXn7ArIfJoq85zxcdg6Mn+oOHbiEQEAmjQCNP8adqUejBhgYTkSjF1D0LWGUxqW3UvRbUgleOzd/ePTayYGC4ezIysIkBjRXeiuAuPRrEOeq+8IKJ7vP6/JwTRTMw4ap46NHTUVCLxOtbFcwfq3yoocx0x3u7SzER7GbJwIn2zpmmRHo73cSffEc/zl6qZOCI35RxLcgj7nPJ5vcJX3Z8fsSKMEbUSprBB8xZJ9dJRmzhiQi+ew8N3i/BSxxEtLcQBUQGDqeb5HhhU9vTatifbv5ixCcF0yYDaQYhvmDir6C3cPQZg4iLiBeXdBeBMXGTVllYp4WIe7A9dYDImbgkLUKSlLrITb2XqTk/BNZqDMaY+EEHYT1riseDJ4VWNwRgqe9xuT3wBWrS6Z4mVk8K5lqGM2rMUGY6aCkgmYeWSYqLiHlLAwakak44M108vvGiExwDWwD/x2C7pD/i376vXomhtH217V2+vGV6mbBtxGd8ZViBFI4ZxQJPtorQlxrnA2ubkTRYwWQIex4JlIMal79kF3goDnhv2vZrAIsEBbLd/D1K83kY7fWIf5HpNpwIqFLjPmgd2+Lai7UCYo0j62VmSbbk25gwnE/Al3sLJ/1BeeTMBHMdZNGoywwSMcFgT2xg270UjSSH0gLwsZtY/dFtrQ5iVbZYTr6YFtIKCLWr3cJiCRdXAsZigGBIUTbQ74L1rLE1y2zRWDmNVHFWxGUabaqTSNLN1RSSuAyN/+LDfP0hb60W5ld8Esb4ase6BZ+HEHlkGC5VnnNHtITswmD3H/HBD4uXEWPfaPyoW8YNdPhKUVqnDkRsEsDRPhGJ50Id+scH82WnSSSttPeR9lAZEA9xCmpIZC9jeKc5cSQrLyeHLk0luPyNWDsIR8O3rafdI7lXllCZBTwSf9hOxGOeYE90J+eDpPNPNMsNkOF5hXXPO7fNI++dmuCpBGpSTXcOdb3jWK3JdLGGOEztKlabXKjRJoAFKJe9eMXE6PIpV8u0t0d+ctAJusYJIe0VLyrBiAFwbi3F/3HJFQ18z7PNhxJrL2NQyIPR6wBR6Aph25AEDfLfDvVyl2hFAxi28zdHAM5/qD377LbCaF95NTuZxDjPl2EeoUs0yVDDh7I9LVWmidxE99K9YpMhbYlilaWSV31g1yRST0QlQWbGJeIEqrjDCOGWVWzoALuQjqJxgn6QiZ1AgW+PPE2N7EDZvvlEOrWzYQ0+HsXaFkBWeRv2dkeP7tUhYqQ+85ptHuXmk8fyWNVPD6BStRirXo+Y//MhWVv7vh0MoOMXxBnwQS66yjjsp/eZBVbKqTG+XP0+B4Blme3aKy1S4JUernUU/222i83L6SCO2pemWp31D+a2WkANARqO+EQ7UCKvNyqUwtyHJl9wP7d1GFOaQF2rLTtwV+Zagaj97TbCPJxxuA3OTYDAnUxlHnCkI4YsvXCvG7WeC3UPwljuG5HXG0iTQIzkuyKJi6g+4MY4q0bQLCtZ6QJOlxuAedwjLH0gBHMBjvlsII3R4jWoUFgSA1NESTKrLmBt24s5uh6E+Nlxsxpz9dFH1UVlnnhGhho/icdNOxVMNnhOx6B4bsFCOCYMZWoV9VnCZlwlsYHpez+fCSEiWF8pxO9lPeNVceQ6/GMdW99KQCxA9W54AH8qP3OoM4Dt+jApb1N6SbejeKGYp1+nmwWVkEgYnAIQCV9Kvonc+dIPxj6HcjUtYX0djLe1Q7JTiajMMsYlIKCWEkozX4ZB9CyF/ZVlL6LFAG6CGoS/KBFYn4HdNWwoqGtfBKVRhpsuqldptBh9rPxg70N2d1wsQ9Tdh94OIYkczWiXZarRXpYmKUa5MPNzqjz8KdXrnEdApDm1A4/OYrdXKBoiZzQTbEvErcGIPAHY84RKcVEkCGlN4oeBS7BMrQemuSc2YZpdYFFkMwwLobU41yHCAWJjqaJUz726Ko5iNnb18HC2AdSi38E4QVkBv45um3DpL11FuLq+cyjXdJXPStfUcRS7Ft3W5H7WYFJcJnTzy+t+dhifA7wRvq7MlrVFrRmQfTB6m5WFHP4FN9Sowia+fhu4CxzJ0MDyB76sLjqPs0b0v8QLE1FP6jIe1pGJmOjw3vLIVOhgkpdIOFTEBDHQfwEfzFPOfhAsweQHJrXRGQGdyM6+wy9UpuGnqH/y1wqdYswcbCzdJIJyqQlZ/giAOodsEpwrwPapZIH6MTTW8XfWGStlMYPwG2kM1xvv3geW2y0lEaYZZVfEsX9Em0zEtg4HmnndgkykbVwhjEdw34dpQtNTzOXGNZhhTPj1LuGDCM9eA8d+08PAZt4PtNJ1k2eCQTHSLpTeUsho32okwbWT00JL1N3ecdMJ7F54pA2uHSncJf00xZaVwIWlWuBHA5RMsKU3Pbgh/GO28aaaMxzI9RdROywMrSGz64HisU77/tYk1eaKW2GvBVhuXvhLDnfcAFj/m/lyC/RLtKPSVAHrKPx9mC09SVlAe5TkutMZ7l5Mxz2GsQgAplMN4EsIwF76ZC+3oxOImKWjdfIazifr9l8T8PsqZ2HUAdxFGU0fNCbh7aI3TvCqMqWEn8Ex7BebQmHVYifGYsoqWaGLiDuIWAixTrWjxN+xlerxxBLD/3WseTqfT8PqvFz45ZdbxH8f3MlU/Kn0ok5/ZL+Y9CJesshfu5f/g2+fdPE0nH+ttxcqjcG0uPswPH6DxLPiMYCjK5AWj33gKzDBP1DkqXn69/Enx0KpCvK8oz6NEM5lQuYC5HafIWHbkoRtzMHfdYWHz12DtlXsdKSL++m2Q6/oHRoP///nX33//A46aSl3mawIA"; \ No newline at end of file diff --git a/docs/classes/torch.html b/docs/classes/torch.html new file mode 100644 index 0000000..39de96d --- /dev/null +++ b/docs/classes/torch.html @@ -0,0 +1,91 @@ +
Static
_reshapeStatic
addStatic
atStatic
broadcastStatic
divStatic
expStatic
getimport { GPU } from "@eduardoleao052/gpu"
+Static
loadStatic
logStatic
masked_Static
matmulStatic
meanStatic
mulStatic
negStatic
nnAdd submodules:
+Static
onesStatic
optimStatic
ParameterStatic
powStatic
randStatic
randintStatic
randnStatic
reshapeStatic
saveStatic
sqrtStatic
tensorStatic
TensorAdd methods from tensor.js (these methods are accessed with "torch."):
+Static
transposeStatic
trilStatic
varianceStatic
zerosGenerates vectors for a set of documents and creates an HNSW index using hnswlib in C++ compiled to WASM JS for efficient similarity search.
- - +An array of document texts to be vectorized.
Optional
options: { Optional parameters for vector generation and indexing.
The maximum number of data points.
The length of data point vector that will be indexed.
The created HNSW index.
An array of plot data points.
JS-PyTorch is a neural net matrix multiplication library +with GPU.js acceleration (translates matmul into WebGPU shader code) +and using PyTorch API syntax. +torch +Tensor Creation and Manipulation:
+Function
tensor(data, requires_grad = false, device = 'cpu') Creates a new Tensor filled with the given data
+Function
zeros(*shape, requires_grad = false, device = 'cpu') Creates a new Tensor filled with zeros
+Function
ones(*shape, requires_grad = false, device = 'cpu') Creates a new Tensor filled with ones
+Function
tril(*shape, requires_grad = false, device = 'cpu') Creates a new 2D lower triangular Tensor
+Function
randn(*shape, requires_grad = false, device = 'cpu', xavier = false) Creates a new Tensor filled with random values from a normal distribution
+Function
rand(*shape, requires_grad = false, device = 'cpu') Creates a new Tensor filled with random values from a uniform distribution
+Function
randint(low, high, *shape, requires_grad = false, device = 'cpu') Creates a new Tensor filled with random integers +Tensor Methods:
+Method
tensor.backward() Performs backpropagation from this tensor backwards
+Method
tensor.zero_grad() Clears the gradients stored in this tensor
+Method
tensor.zero_grad_graph() Clears the gradients stored in this tensor and all tensors that led to it
+Method
tensor.tolist() Returns the tensor's data as a JavaScript Array
+Function
add(a, b) Performs element-wise addition of two tensors
+Function
sub(a, b) Performs element-wise subtraction of two tensors
+Function
neg(a) Returns the element-wise opposite of the given Tensor
+Function
mul(a, b) Performs element-wise multiplication of two tensors
+Function
div(a, b) Performs element-wise division of two tensors
+Function
matmul(a, b) Performs matrix multiplication between two tensors
+Function
sum(a, dim, keepdims = false) Gets the sum of the Tensor over a specified dimension
+Function
mean(a, dim, keepdims = false) Gets the mean of the Tensor over a specified dimension
+Function
variance(a, dim, keepdims = false) Gets the variance of the Tensor over a specified dimension
+Function
transpose(a, dim1, dim2) Transposes the tensor along two consecutive dimensions
+Function
at(a, index1, index2) Returns elements from the tensor based on given indices
+Function
masked_fill(a, condition, value) Fills elements in the tensor based on a condition
+Function
pow(a, n) Returns tensor raised to element-wise power
+Function
sqrt(a) Returns element-wise square root of the tensor
+Function
exp(a) Returns element-wise exponentiation of the tensor
+Function
log(a) Returns element-wise natural log of the tensor
+Neural Network Layers: +nn.Linear(in_size, out_size, device, bias, xavier) Applies a linear transformation to the input tensor +nn.MultiHeadSelfAttention(in_size, out_size, n_heads, n_timesteps, dropout_prob, device) Applies a self-attention layer on the input tensor +nn.FullyConnected(in_size, out_size, dropout_prob, device, bias) Applies a fully-connected layer on the input tensor +nn.Block(in_size, out_size, n_heads, n_timesteps, dropout_prob, device) Applies a transformer Block layer on the input tensor +nn.Embedding(in_size, embed_size) Creates an embedding table for vocabulary +nn.PositionalEmbedding(input_size, embed_size) Creates a positional embedding table +nn.ReLU() Applies Rectified Linear Unit activation function +nn.Softmax() Applies Softmax activation function +nn.Dropout(drop_prob) Applies dropout to input tensor +nn.LayerNorm(n_embed) Applies Layer Normalization to input tensor +nn.CrossEntropyLoss() Computes Cross Entropy Loss between target and input tensor
+Optimization: +optim.Adam(params, lr, reg, betas, eps) Adam optimizer for updating model parameters
+Utility Functions:
+Function
save(model, file) Saves the model reruning data blob (for you to save)
+Function
load(model, loadedData) Loads the model from saved data
+Author
PyTorch Contributors, +Leao, E. et al (2022), +See also: Brain.js
+