Skip to content

Latest commit

 

History

History
1462 lines (1200 loc) · 46.7 KB

index.md

File metadata and controls

1462 lines (1200 loc) · 46.7 KB

rest-hapi

A RESTful API generator plugin for the hapi framework utilizing the mongoose ODM.

Build Status npm npm

rest-hapi is a hapi plugin intended to abstract the work involved in setting up API routes/validation/handlers/etc. for the purpose of rapid app development. At the same time it provides a powerful combination of relational structure with NoSQL flexibility. You define your models and the rest is done for you. Have your own API server up and running in minutes!

Features

Live demos

View the swagger docs for the live demos:

appy: http://ec2-35-164-131-1.us-west-2.compute.amazonaws.com:8125

rest-hapi-demo: http://ec2-35-164-131-1.us-west-2.compute.amazonaws.com:8124

Example Projects

appy: A ready-to-go user system built on rest-hapi.

rest-hapi-demo: A simple demo project implementing rest-hapi in a hapi server.

Readme contents

Requirements

You need Node.js installed and you'll need MongoDB installed and running.

Back to top

Installation

$ npm install rest-hapi

Back to top

First time setup/Demo

WARNING: This will clear all data in the following MongoDB collections (in the db defined in restHapi.config, default mongodb://localhost/rest_hapi) if they exist: users, roles.

If you would like to seed your database with some demo models/data, run:

$ ./node_modules/.bin/rest-hapi-cli seed

NOTE: The password for all seed users is 1234.

You can use these models as templates for your models or delete them later if you wish.

Back to top

Using the plugin

As rest-hapi is a hapi plugin, you'll need to set up a hapi server to generate API endpoints. You'll also need to set up a mongoose instance and include it in the plugin's options when you register. Below is an example nodejs script api.js with the minimum requirements to set up an API with rest-hapi:

'use strict';

let Hapi = require('hapi');
let mongoose = require('mongoose');
let restHapi = require('rest-hapi');

function api(){

    let server = new Hapi.Server();

    server.connection(restHapi.config.server.connection);

    server.register({
            register: restHapi,
            options: {
                mongoose: mongoose
            }
        },
        function() {
            server.start();
        });

    return server;
}

module.exports = api();

You can then run $ node api.js and point your browser to http://localhost:8124/ to view the swagger docs (NOTE: API endpoints will only be generated if you have provided models. See First time setup/Demo or Creating endpoints.)

Back to top

Configuration

Configuration of the generated API is handled through the restHapi.config object. Below is a description of the current configuration options/properties.

/**
 * config.js - Configuration settings for the generated API
 */
var config = {};
config.server = {};
config.mongo = {};

//TODO: remove config.server?

/**
 * Your app title goes here.
 * @type {string}
 */
config.appTitle = "rest-hapi API";

/**
 * Your app version goes here.
 * @type {string}
 */
config.version = '1.0.0';

/**
 * Flag signifying whether the absolute path to the models directory is provided
 * @type {boolean}
 */
config.absoluteModelPath = false;

/**
 * Path to the models directory (default 'models')
 * @type {string}
 */
config.modelPath = 'models';

/**
 * Server settings:
 * - config.server.port = 8124; (default)
 */
config.server.port = 8124;

config.server.routes = {
    cors: {
        additionalHeaders: ['X-Total-Count'],
        additionalExposedHeaders: ['X-Total-Count']
    }
};

config.server.connection = {
    port: config.server.port,
    routes: config.server.routes
};

/**
 * Mongo settings
 * - config.mongo.URI = 'mongodb://localhost/rest_hapi'; (local db, default)
 */
config.mongo.URI = 'mongodb://localhost/rest_hapi';

/**
 * Authentication strategy to be used for all generated endpoints.
 * Set to false for no authentication (default).
 * @type {boolean/string}
 */
config.authStrategy = false;

/**
 * MetaData options:
 * default: true
 * @type {boolean}
 */
config.enableCreatedAt = true;
config.enableUpdatedAt = true;

/**
 * Soft delete options
 * - enableSoftDelete: adds "isDeleted" property to each model. Delete endpoints set "isDeleted" to true
 * unless the payload contains { hardDelete: true }, in which case the document is actually deleted (default false)
 * - filterDeletedEmbeds: if enabled, associations with "isDeleted" set to true will not populate (default false)
 * NOTE: this option is known to be buggy
 * @type {boolean}
 */
config.enableSoftDelete = false;
config.filterDeletedEmbeds = false;

/**
 * Validation options:
 * default: true
 * @type {boolean}
 */
config.enableQueryValidation = true;
config.enablePayloadValidation = true;
config.enableResponseValidation = true;

/**
 * If set to true, (and authStrategy is not false) then endpoints will be generated with pre-defined
 * scopes based on the model definition.
 * @type {boolean}
 */
config.generateScopes = true;

/**
 * Flag specifying whether to text index all string fields for all models to enable text search.
 * WARNING: enabling this adds overhead to add inserts and updates, as well as added storage requirements.
 * Default is false.
 * @type {boolean}
 */
config.enableTextSearch = false;

/**
 * Log level options:
 * - INTERNAL use it for logging calls and other internal stuff
 * - DEBUG recommended to use it for debugging applications
 * - NOTE development verbose information (default)
 * - INFO minor information
 * - LOG significant messages
 * - WARNING really important stuff
 * - ERROR application business logic error condition
 * - FATAL system error condition
 */
config.loglevel = "DEBUG";

/**
 * Determines the initial expansion state of the swagger docs
 * - options: 'none', 'list', 'full' (default: 'none')
 * @type {string}
 */
config.docExpansion = 'none';

module.exports = config;

Back to top

Swagger documentation

Swagger documentation is automatically generated for all endpoints and can be viewed by pointing a browser at the server URL. By default this will be http://localhost:8124/. The swagger docs provide quick access to testing your endpoints along with model schema descriptions and query options.

Back to top

Creating endpoints

Restful endpoints are automatically generated based off of any mongoose models that you add to your models folder with the file structure of {model name}.model.js. These models must adhere to the following format:

module.exports = function (mongoose) {
    var Schema = new mongoose.Schema({
        /*fill in schema fields*/
    });

    Schema.statics = {
        collectionName: /*your model name*/,
        routeOptions: {}
    };

    return Schema;
};

As a concrete example, here is a user model:

/models/user.model.js:

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    }
  });
  
  Schema.statics = {
    collectionName: modelName
    routeOptions: {}
  };
  
  return Schema;
};

This will generate the following CRUD endpoints:

DELETE /user        Delete multiple users
POST /user          Create one or more new users
GET /user           Get a list of users
DELETE /user/{_id}  Delete a user
GET /user/{_id}     Get a specific user
PUT /user/{_id}     Update a user

Back to top

Associations

The rest-hapi framework supports model associations that mimic associations in a relational database. This includes one-one, one-many, many-one, and many-many relationships. Associations are created by adding the relevant schema fields and populating the associations object within routeOptions. Associations exists as references to a document's _id field, and can be populated to return the associated object. See Querying for more details on how to populate associations.

ONE_ONE

Below is an example of a one-one relationship between a user model and a dog model. Notice the dog and owner fields in the schemas. A schema field is required for associations of type ONE_ONE or MANY_ONE. This field must match the association name, include a type of ObjectId, and include a ref property with the associated model name.

Each association must be added to an associations object within the routeOptions object. The type and model fields are required for all associations.

/models/user.model.js:

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    },
    dog: {
      type: Types.ObjectId,
      ref: "dog"
    }
  });
  
  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      associations: {
        dog: {
          type: "ONE_ONE",
          model: "dog"
        }
      }
    }
  };
  
  return Schema;
};

/models/dog.model.js:

module.exports = function (mongoose) {
  var modelName = "dog";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    name: {
      type: Types.String,
      required: true
    },
    breed: {
      type: Types.String
    },
    owner: {
      type: Types.ObjectId,
      ref: "user"
    }
  });

  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      associations: {
        owner: {
          type: "ONE_ONE",
          model: "user"
        }
      }
    }
  };

  return Schema;
};

ONE_MANY/MANY_ONE

Below is an example of a one-many/many-one relationship between the user and role models. Notice the title field in the schema. A schema field is required for associations of type ONE_ONE or MANY_ONE. This field must match the association name, include a type of ObjectId, and include a ref property with the associated model name.

/models/user.model.js:

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    },
    title: {
      type: Types.ObjectId,
      ref: "role"
    }

  });
  
  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      associations: {
        title: {
          type: "MANY_ONE",
          model: "role"
        }
      }
    }
  };
  
  return Schema;
};

/models/role.model.js:

module.exports = function (mongoose) {
  var modelName = "role";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    name: {
      type: Types.String,
      required: true,
      enum: ["Account", "Admin", "SuperAdmin"]
    },
    description: {
      type: Types.String
    }
  });

  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      associations: {
        users: {
          type: "ONE_MANY",
          foreignField: "title",
          model: "user"
        }
      }
    }
  };

  return Schema;
};

In this example, a user can belong to one role and a role can be assigned to many users. The type and model fields are required for all associations, and the foreignField field is required for ONE_MANY type associations.

Along with the normal CRUD endpoints, the following association endpoints will be generated for the role model:

GET /role/{ownerId}/user                Get all of the users for a role
POST /role/{ownerId}/user               Add multiple users to a role
DELETE /role/{ownerId}/user             Remove multiple users from a role's list of users
PUT /role/{ownerId}/user/{childId}      Add a single user object to a role's list of users
DELETE /role/{ownerId}/user/{childId}   Remove a single user object from a role's list of users

MANY_MANY

Below is an example of a many-many relationship between the user and group models. In this relationship a single user instance can belong to multiple group instances and vice versa.

/models/user.model.js:

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    }
  });
  
  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      associations: {
        groups: {
          type: "MANY_MANY",
          model: "group"
        }
      }
    }
  };
  
  return Schema;
};

/models/group.model.js:

module.exports = function (mongoose) {
  var modelName = "group";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    name: {
      type: Types.String,
      required: true,
    },
    description: {
      type: Types.String
    }
  });

  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      associations: {
        users: {
          type: "MANY_MANY",
          model: "user"
        }
      }
    }
  };

  return Schema;
};

Along with the normal CRUD endpoints, the following association endpoints will be generated for the user model:

GET /user/{ownerId}/group               Get all of the groups for a user
POST /user/{ownerId}/group              Add multiple groups for a user
DELETE /user/{ownerId}/group            Remove multiple groups from a user's list of groups
PUT /user/{ownerId}/group/{childId}     Add a single group object to a user's list of groups
DELETE /user/{ownerId}/group/{childId}  Remove a single group object from a user's list of groups

and for the group model:

GET /group/{ownerId}/user               Get all of the users for a group
POST /group/{ownerId}/user              Add multiple users for a group
DELETE /group/{ownerId}/user            Remove multiple users from a group's list of users
PUT /group/{ownerId}/user/{childId}     Add a single user object to a group's list of users
DELETE /group/{ownerId}/user/{childId}  Remove a single user object from a group's list of users

MANY_MANY linking models

Many-many relationships can include extra fields that contain data specific to each association instance. This is accomplished through linking models which behave similar to pivot/through tables in a relational database. Linking model files are stored in the /models/linking-models directory and follow the same {model name}.model.js format as normal models. Below is an example of a many-many relationship between the user model and itself through the friends association. The extra field friendsSince could contain a date representing how long the two associated users have known each other. This example also displays how models can contain a reference to themselves.

NOTE The linking model filename does not have to match the model name, however the linkingModel association property must match the linking model modleName property.

/models/user.model.js:

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    }
  });
  
  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      associations: {
        friends: {
          type: "MANY_MANY",
          model: "user",
          alias: "friend",
          linkingModel: "user_user"
        }
      }
    }
  };
  
  return Schema;
};

/models/linking-models/user_user.model.js:

var mongoose = require("mongoose");

module.exports = function () {

  var Types = mongoose.Schema.Types;

  var Model = {
    Schema: {
      friendsSince: {
        type: Types.Date
      }
    },
    modelName: "user_user"
  };

  return Model;
};

Back to top

Route customization

By default route paths are constructed using model names, however aliases can be provided to customize the route paths. routeOptions.alias can be set to alter the base path name, and an alias property for an association can be set to alter the association path name. For example:

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    }
  });
  
  Schema.statics = {
    collectionName: modelName
    routeOptions: {
      alias: "person"
      associations: {
        groups: {
          type: "MANY_MANY",
          model: "group",
          alias: "team"
        }
      }
    }
  };
  
  return Schema;
};

will result in the following endpoints:

DELETE /person 
POST /person 
GET /person 
DELETE /person/{_id} 
GET /person/{_id} 
PUT /person/{_id}
GET /person/{ownerId}/team 
DELETE /person/{ownerId}/team 
POST /person/{ownerId}/team 
DELETE /person/{ownerId}/team/{childId} 
PUT /person/{ownerId}/team/{childId} 

Back to top

Querying

Query parameters can be added to GET requests to filter responses. These parameters are structured and function similar to mongoose queries. Below is a list of currently supported parameters:

  • $skip

    • The number of records to skip in the database. This is typically used in pagination.
  • $limit

    • The maximum number of records to return. This is typically used in pagination.
  • $select

    • A list of basic fields to be included in each resource.
  • $sort

    • A set of fields to sort by. Including field name indicates it should be sorted ascending, while prepending '-' indicates descending. The default sort direction is 'ascending' (lowest value to highest value). Listing multiple fields prioritizes the sort starting with the first field listed.
  • $text

    • A full text search parameter. Takes advantage of indexes for efficient searching. Also implements stemming with searches. Prefixing search terms with a "-" will exclude results that match that term.
  • $term

    • A regex search parameter. Slower than $text search but supports partial matches and doesn't require indexing. This can be refined using the $searchFields parameter.
  • $searchFields

    • A set of fields to apply the $term search parameter to. If this parameter is not included, the $term search parameter is applied to all searchable fields.
  • $embed

    • A set of associations to populate.
  • $count

    • If set to true, only a count of the query results will be returned.
  • $where

    • An optional field for raw mongoose queries.
  • (field "where" queries)

Query parameters can either be passed in as a single string, or an array of strings.

Populate nested associations

Associations can be populated through the $embed parameter. To populate nested associations, simply chain a parameter with .. For example, consider the MANY_MANY group-user association from the example above. If we populate the users of a group with /group?$embed=users we might get a response like so:

{
    "_id": "58155f1a071468d3bda0fc6e",
    "name": "A-team",
    "users": [
      {
        "user": {
          "_id": "580fc1a0e2d3308609470bc6",
          "email": "[email protected]",
          "title": "580fc1e2e2d3308609470bc8"
        },
        "_id": "58155f6a071468d3bda0fc6f"
      },
      {
        "user": {
          "_id": "5813ad3d0d4e5c822d2f05bd",
          "email": "[email protected]",
          "title": "580fc1eee2d3308609470bc9"
        },
        "_id": "58155f6a071468d3bda0fc71"
      }
    ]
}

However we can further populate each user's title field with a nested $embed parameter: /group?$embed=users.title which could result in the following response:

{
    "_id": "58155f1a071468d3bda0fc6e",
    "name": "A-team",
    "users": [
      {
        "user": {
          "_id": "580fc1a0e2d3308609470bc6",
          "email": "[email protected]",
          "title": {
            "_id": "580fc1e2e2d3308609470bc8",
            "name": "Admin"
          }
        },
        "_id": "58155f6a071468d3bda0fc6f"
      },
      {
        "user": {
          "_id": "5813ad3d0d4e5c822d2f05bd",
          "email": "[email protected]",
          "title": {
            "_id": "580fc1eee2d3308609470bc9",
            "name": "SuperAdmin"
          }
        },
        "_id": "58155f6a071468d3bda0fc71"
      }
    ]
}

Back to top

Validation

Validation in the rest-hapi framework is implemented with joi.
This includes validation of headers, query parameters, payloads, and responses. joi validation models are based primarily off of each model's field properties. Below is a list of mongoose schema types and their joi equivalent within rest-hapi:

Schema Type joi Validation
ObjectId Joi.objectId() (via joi-objectid)
Boolean Joi.bool()
Number Joi.number()
Date Joi.date()
String Joi.string()
types Joi.any()

Fields of type String that include an enum property result in the following joi validation:

Field Property joi Validation
enum: [items] Joi.any().only([items])

rest-hapi generates joi validation models for create, read, and update events as well as association events with linking models. By default these validation models include all the fields of the mongoose models and list them as optional. However additional field properties can be included to customize the validation models. Below is a list of currently supported field properties and their effect on the validation models.

Field Property Validation Model
required: true field required on create
requireOnRead: true field required on read/response
requireOnUpdate: true field required on update
allowOnRead: false field excluded from read model
allowOnUpdate: false field excluded from update model
allowOnCreate: false field excluded from create model
queryable: false field cannot be included as a query parameter
exclude: true field cannot be included in a response or as part of a query
allowNull: true field accepts null as a valid value

Back to top

Middleware

Models can support middleware functions for CRUD operations. These exist under the routeOptions object. Middleware functions must return a promise. The following middleware functions are available:

  • list:
    • post(query, result, Log)
  • find:
    • post(query, result, Log)
  • create:
    • pre(payload, Log)
    • post(payload, result, Log)
  • update:
    • pre(payload, Log)
    • post(payload, result, Log)
  • delete:
    • pre(_id, hardDelete, Log)
    • post(hardDelete, deleted, Log)

For example, a create: pre function can be defined to encrypt a users password using a static method generatePasswordHash. Notice the use of the Q library to return a promise.

var Q = require('q');
var bcrypt = require('bcrypt');

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    }
  });
  
  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      create: {
        pre: function (payload, Log) {
          var deferred = Q.defer();
          var hashedPassword = mongoose.model('user').generatePasswordHash(payload.password);

          payload.password = hashedPassword;
          deferred.resolve(payload);
          return deferred.promise;
        }
      }
    },

    generatePasswordHash: function(password) {
      var salt = bcrypt.genSaltSync(10);
      var hash = bcrypt.hashSync(password, salt);
      return hash;
    }
  };
  
  return Schema;
};

Back to top

Additional endpoints

If endpoints beyond the generated CRUD endpoints are needed, they can easily be added to a model as an item in the routeOptions.extraEndpoints array. The endpoint logic should be contained within a function using the footprint: function (server, model, options, Log) . For example, if we wanted to add a Password Update endpoint to the user model, it could look like this:

var Joi = require('joi');
var bcrypt = require('bcrypt');
var restHapi = require('rest-hapi');

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    }
  });
  
  Schema.statics = {
    collectionName:modelName,
    routeOptions: {
      extraEndpoints: [
        //Password Update Endpoint
        function (server, model, options, Log) {
          Log = Log.bind("Password Update");
          var Boom = require('boom');

          var collectionName = model.collectionDisplayName || model.modelName;

          Log.note("Generating Password Update endpoint for " + collectionName);

          var handler = function (request, reply) {
            var hashedPassword = model.generatePasswordHash(request.payload.password);
            return restHapi.update(model, request.params._id, {password: hashedPassword}, Log).then(function (result) {
              if (result) {
                return reply("Password updated.").code(200);
              }
              else {
                return reply(Boom.notFound("No resource was found with that id."));
              }
            })
            .catch(function (error) {
              Log.error("error: ", error);
              return reply(Boom.badImplementation("An error occurred updating the resource.", error));
            });
          }

          server.route({
            method: 'PUT',
            path: '/user/{_id}/password',
            config: {
              handler: handler,
              auth: null,
              description: 'Update a user\'s password.',
              tags: ['api', 'User', 'Password'],
              validate: {
                params: {
                  _id: Joi.objectId().required()
                },
                payload: {
                  password: Joi.string().required()
                  .description('The user\'s new password')
                }
              },
              plugins: {
                'hapi-swagger': {
                  responseMessages: [
                    {code: 200, message: 'Success'},
                    {code: 400, message: 'Bad Request'},
                    {code: 404, message: 'Not Found'},
                    {code: 500, message: 'Internal Server Error'}
                  ]
                }
              }
            }
          });
        }
      ]
    },
    
    generatePasswordHash: function(password) {
      var salt = bcrypt.genSaltSync(10);
      var hash = bcrypt.hashSync(password, salt);
      return hash;
    }
  };
  
  return Schema;
};

Back to top

Authorization

rest-hapi takes advantage of the scope property within the auth route config object of a hapi endpoint. Each generated endpoint has its scope property set based on model properties within the routeOptions.scope object. There are three types of scopes that can be set: a general scope property, action scope properties, and association scope properties. A description of these can be seen below.

The first type of scope is a scope property that, when set, is applied to all generated endpoints for that model.

The second is an action specific scope property that only applies to endpoints corresponding with the action. A list of these action scope properties can be seen below:

  • createScope: value is added to the scope of any endpoint that creates model documents
  • readScope: value is added to the scope of any endpoint that retrieves documents and can be queried against
  • updateScope: value is added to the scope of any endpoint that directly updates documents
  • deleteScope: value is added to the scope of any endpoint that deletes documents
  • associateScope: value is added to the scope of any endpoint that modifies an association

The third type of scope is property that relates to a specific association action, with an action prefix of add, remove, or get. These scope properties are specific to the associations defined in the model and take the form of :

-{action}{modelName}{associationName}Scope

In the example below, users with the Admin scope in their authentication credentials can access all of the generated endpoints for the user model, users with the User scope are granted read access for the user model, and users with the addUserGroupsScope are capable of adding group associations to a user document.

module.exports = function (mongoose) {
  var modelName = "user";
  var Types = mongoose.Schema.Types;
  var Schema = new mongoose.Schema({
    email: {
      type: Types.String,
      required: true,
      unique: true
    },
    password: {
      type: Types.String,
      required: true,
      exclude: true,
      allowOnUpdate: false
    }
  });
  
  Schema.statics = {
    collectionName: modelName
    routeOptions: {
      scope: {
        scope: "Admin",
        readScope: "User",
        addUserGroupsScope: "Project Lead"
      },
      associations: {
        groups: {
          type: "MANY_MANY",
          model: "group",
          alias: "team"
        }
      }
    }
  };
  
  return Schema;
};

NOTE Use of scope properties requires that an authentication strategy be defined and implemented. If the config.authStrategy property is set to false, then no scopes will be applied, even if they are defined in the model. For an example of scopes in action, check out appy:

Generating scopes

If the config.generateScopes property is set to true, then generated endpoints will come pre-defined with scope values. These values will exist in addition to any scope values defined in the routeOptions.scope object. For instance, the tables below show two possibilities for the user model scope: the first is with no model scope defined, and the second is with a model scope defined as in the example above.

Without Model Scope Defined

Endpoint Scope
DELETE /user [ 'root', 'delete', 'deleteUser' ]
POST /user [ 'root', 'create', 'createUser' ]
GET /user [ 'root', 'read', 'readUser' ]
DELETE /user/{_id} [ 'root', 'delete', 'deleteUser' ]
GET /user/{_id} [ 'root', 'read', 'readUser' ]
PUT /user/{_id} [ 'root', 'update', 'updateUser' ]
GET /user/{ownerId}/group [ 'root', 'read', 'readUser', 'getUserGroups' ]
POST /user/{ownerId}/group [ 'root', 'associate', 'associateUser', 'addUserGroups' ]
DELETE /user/{ownerId}/group [ 'root', 'associate', 'associateUser', 'removeUserGroups' ]
PUT /user/{ownerId}/group/{childId} [ 'root', 'associate', 'associateUser', 'addUserGroups' ]
DELETE /user/{ownerId}/group/{childId} [ 'root', 'associate', 'associateUser', 'removeUserGroups' ]

With Model Scope Defined

Endpoint Scope
DELETE /user [ 'root', 'Admin', 'delete', 'deleteUser' ]
POST /user [ 'root', 'Admin', 'create', 'createUser' ]
GET /user [ 'root', 'Admin', 'read', 'readUser', 'User' ]
DELETE /user/{_id} [ 'root', 'Admin', 'delete', 'deleteUser' ]
GET /user/{_id} [ 'root', 'Admin', 'read', 'readUser', 'User' ]
PUT /user/{_id} [ 'root', 'Admin', 'update', 'updateUser' ]
GET /user/{ownerId}/group [ 'root', 'Admin', 'read', 'readUser', 'User', 'getUserGroups' ]
POST /user/{ownerId}/group [ 'root', 'Admin', 'associate', 'associateUser', 'addUserGroups', 'Project Lead' ]
DELETE /user/{ownerId}/group [ 'root', 'Admin', 'associate', 'associateUser', 'removeUserGroups' ]
PUT /user/{ownerId}/group/{childId} [ 'root', 'Admin', 'associate', 'associateUser', 'addUserGroups', 'Project Lead' ]
DELETE /user/{ownerId}/group/{childId} [ 'root', 'Admin', 'associate', 'associateUser', 'removeUserGroups' ]

Back to top

Exposed handler methods

rest-hapi exposes the handler methods used in the generated endpoints for the user to take advantage of in their server code. These methods provide several advantages including:

The available methods are:

  • list
  • find
  • create
  • update
  • deleteOne
  • deleteMany
  • addOne
  • removeOne
  • addMany
  • removeMany
  • getAll

Check out the appy seed file for an excellent example of rest-hapi handler methods in action, or refer to the Additional endpoints section example.

A more detailed description of each method can be found below:

/**
 * Finds a list of model documents
 * @param model: A mongoose model.
 * @param query: rest-hapi query parameters to be converted to a mongoose query.
 * @param Log: A logging object.
 * @returns {object} A promise for the resulting model documents.
 */
function list(model, query, Log)

/**
 * Finds a model document
 * @param model: A mongoose model.
 * @param _id: The document id.
 * @param query: rest-hapi query parameters to be converted to a mongoose query.
 * @param Log: A logging object.
 * @returns {object} A promise for the resulting model document.
 */
function find(model, _id, query, Log) {...}

/**
 * Creates a model document
 * @param model: A mongoose model.
 * @param payload: Data used to create the model document.
 * @param Log: A logging object.
 * @returns {object} A promise for the resulting model document.
 */
function create(model, payload, Log) {...}

/**
 * Updates a model document
 * @param model: A mongoose model.
 * @param _id: The document id.
 * @param payload: Data used to update the model document.
 * @param Log: A logging object.
 * @returns {object} A promise for the resulting model document.
 */
function update(model, _id, payload, Log) {...}

/**
 * Deletes a model document
 * @param model: A mongoose model.
 * @param _id: The document id.
 * @param hardDelete: Flag used to determine a soft or hard delete.
 * @param Log: A logging object.
 * @returns {object} A promise returning true if the delete succeeds.
 */
function deleteOne(model, _id, hardDelete, Log) {...}

/**
 * Deletes multiple documents
 * @param model: A mongoose model.
 * @param payload: Either an array of ids or an array of objects containing an id and a "hardDelete" flag.
 * @param Log: A logging object.
 * @returns {object} A promise returning true if the delete succeeds.
 */
function deleteMany(model, payload, Log) {...}

/**
 * Adds an association to a document
 * @param ownerModel: The model that is being added to.
 * @param ownerId: The id of the owner document.
 * @param childModel: The model that is being added.
 * @param childId: The id of the child document.
 * @param associationName: The name of the association from the ownerModel's perspective.
 * @param payload: An object containing an extra linking-model fields.
 * @param Log: A logging object
 * @returns {object} A promise returning true if the add succeeds.
 */
function addOne(ownerModel, ownerId, childModel, childId, associationName, payload, Log) {...}

/**
 * Removes an association to a document
 * @param ownerModel: The model that is being removed from.
 * @param ownerId: The id of the owner document.
 * @param childModel: The model that is being removed.
 * @param childId: The id of the child document.
 * @param associationName: The name of the association from the ownerModel's perspective.
 * @param Log: A logging object
 * @returns {object} A promise returning true if the remove succeeds.
 */
function removeOne(ownerModel, ownerId, childModel, childId, associationName, Log) {...}

/**
 * Adds multiple associations to a document
 * @param ownerModel: The model that is being added to.
 * @param ownerId: The id of the owner document.
 * @param childModel: The model that is being added.
 * @param associationName: The name of the association from the ownerModel's perspective.
 * @param payload: Either a list of id's or a list of id's along with extra linking-model fields.
 * @param Log: A logging object
 * @returns {object} A promise returning true if the add succeeds.
 */
function addMany(ownerModel, ownerId, childModel, associationName, payload, Log) {...}

/**
 * Removes multiple associations from a document
 * @param ownerModel: The model that is being removed from.
 * @param ownerId: The id of the owner document.
 * @param childModel: The model that is being removed.
 * @param associationName: The name of the association from the ownerModel's perspective.
 * @param payload: A list of ids
 * @param Log: A logging object
 * @returns {object} A promise returning true if the remove succeeds.
 */
function removeMany(ownerModel, ownerId, childModel, associationName, payload, Log) {...}

/**
 * Get all of the associations for a document
 * @param ownerModel: The model that is being added to.
 * @param ownerId: The id of the owner document.
 * @param childModel: The model that is being added.
 * @param associationName: The name of the association from the ownerModel's perspective.
 * @param query: rest-hapi query parameters to be converted to a mongoose query.
 * @param Log: A logging object
 * @returns {object} A promise returning true if the add succeeds.
 */
function getAll(ownerModel, ownerId, childModel, associationName, query, Log) {...}

Back to top

Soft delete

rest-hapi supports soft delete functionality for documents. When the enableSoftDelete config property is set to true, documents will gain an isDeleted property when they are created that will be set to false. Whenever that document is deleted (via a rest-hapi endpoint or method), the document will remain in the collection, its isDeleted property will be set to true, and the deletedAt property will be populated.

"Hard" deletion is still possible when soft delete is enabled. In order to hard delete a document (i.e. remove a document from it's collection) via the api, a payload must be sent with the hardDelete property set to true.

The rest-hapi delete methods include a hardDelete flag as a parameter. The following is an example of a hard delete using a rest-hapi method:

restHapi.deleteOne(model, _id, true, Log);

Back to top

Metadata

rest-hapi supports the following optional metadata:

  • createdAt (default enabled)
  • updatedAt (default enabled)
  • deletedAt (default disabled) (see Soft delete)

When enabled, these properties will automatically be populated during CRUD operations. For example, say I create a user with a payload of:

 {
    "email": "[email protected]",
    "password": "1234"
 }

If I then query for this document I might get:

 {
    "_id": "588077dfe8b75a830dc53e8b",
    "email": "[email protected]",
    "createdAt": "2017-01-19T08:25:03.577Z",
    "updatedAt": "2017-01-19T08:25:03.577Z"
 }

If I later update that user's email then an additional query might return:

 {
    "_id": "588077dfe8b75a830dc53e8b",
    "email": "[email protected]",
    "createdAt": "2017-01-19T08:25:03.577Z",
    "updatedAt": "2017-01-19T08:30:46.676Z"
 }

The deletedAt property marks when a document was soft deleted.

NOTE: Metadata properties are only set/updated if the document is created/modified using rest-hapi endpoints/methods. Ex:

mongoose.model('user').findByIdAndUpdate(_id, payload) will not modify updatedAt whereas

restHapi.update(mongoose.model('user'), _id, payload) will. (see Exposed handler methods)

Back to top

Model generation

In some situations models may be required before or without endpoint generation. For example some hapi plugins may require models to exist before the routes are registered. In these cases rest-hapi provides a generateModels function that can be called independently. See below for example usage:

restHapi.generateModels(mongoose)
        .then(function() {
            server.register(require('hapi-auth-jwt2'), (err) => {
                require('./utilities/auth').applyJwtStrategy(server);  //requires models to exist

                server.register({
                    register: restHapi,
                    options: {
                        mongoose: mongoose
                    }
                }, function(err) {

                    server.start(function (err) {

                        server.log('info', 'Server initialized: ' + server.info);

                        restHapi.logUtil.logActionComplete(restHapi.logger, "Server Initialized", server.info);
                    });
                });
            });
        })
        .catch(function(error) {
            console.log("There was an error generating the models: ", error)
        });

NOTE: See gulp/seed.js for another example usage of generateModels.

Back to top

Testing

If you have downloaded the source you can run the tests with:

$ gulp test

Back to top

License

MIT

Back to top

Questions?

If you have any questions/issues/feature requests, please feel free to open an issue. We'd love to hear from you!

Back to top

Future work

This project is still in its infancy, and there are many features we would still like to add. Below is a list of some possible future updates:

  • sorting through populate fields (Ex: sort users through role.name)
  • support marking fields as duplicate i.e. any associated models referencing that model will duplicate those fields along with the reference Id. This could allow for a shallow embed that will return a list of reference ids with their "duplicate" values, and a full embed that will return the fully embedded references
  • support automatic logging/auditing of all operations
  • (LONG TERM) support mysql as well as mongodb

Back to top

Contributing

Please reference the contributing doc: https://github.com/JKHeadley/rest-hapi/blob/master/CONTRIBUTING.md

Back to top