-
Notifications
You must be signed in to change notification settings - Fork 49
/
run.py
539 lines (462 loc) · 17.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
"""Script to run end-to-end evaluation on the benchmark.
Modified from https://github.com/web-arena-x/webarena/blob/main/run.py.
"""
import argparse
import glob
import json
import logging
import os
import random
import subprocess
import tempfile
import time
from pathlib import Path
from typing import List
import openai
import requests
import torch
from PIL import Image
from agent import (
PromptAgent,
construct_agent,
)
from agent.prompts import *
from browser_env import (
Action,
ActionTypes,
ScriptBrowserEnv,
StateInfo,
Trajectory,
create_stop_action,
)
from browser_env.actions import is_equivalent
from browser_env.auto_login import get_site_comb_from_filepath
from browser_env.helper_functions import (
RenderHelper,
get_action_description,
)
from evaluation_harness import evaluator_router, image_utils
DATASET = os.environ["DATASET"]
LOG_FOLDER = "log_files"
Path(LOG_FOLDER).mkdir(parents=True, exist_ok=True)
LOG_FILE_NAME = f"{LOG_FOLDER}/log_{time.strftime('%Y%m%d%H%M%S', time.localtime())}_{random.randint(0, 10000)}.log"
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
file_handler = logging.FileHandler(LOG_FILE_NAME)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(file_handler)
# Set the log format
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation on the benchmark"
)
parser.add_argument(
"--render", action="store_true", help="Render the browser"
)
parser.add_argument(
"--slow_mo",
type=int,
default=0,
help="Slow down the browser by the specified amount",
)
parser.add_argument(
"--action_set_tag", default="id_accessibility_tree", help="Action type"
)
parser.add_argument(
"--observation_type",
choices=[
"accessibility_tree",
"accessibility_tree_with_captioner",
"html",
"image",
"image_som",
],
default="accessibility_tree",
help="Observation type",
)
parser.add_argument(
"--current_viewport_only",
action="store_true",
help="Only use the current viewport for the observation",
)
parser.add_argument("--viewport_width", type=int, default=1280)
parser.add_argument("--viewport_height", type=int, default=2048)
parser.add_argument("--save_trace_enabled", action="store_true")
parser.add_argument("--sleep_after_execution", type=float, default=0.0)
parser.add_argument("--max_steps", type=int, default=30)
# agent config
parser.add_argument("--agent_type", type=str, default="prompt")
parser.add_argument(
"--instruction_path",
type=str,
default="agents/prompts/state_action_agent.json",
)
parser.add_argument(
"--parsing_failure_th",
help="When consecutive parsing failures exceed this threshold, the agent will terminate early.",
type=int,
default=3,
)
parser.add_argument(
"--repeating_action_failure_th",
help="When consecutive repeated actions exceed this threshold, the agent will terminate early.",
type=int,
default=5,
)
parser.add_argument("--test_config_base_dir", type=str)
parser.add_argument(
"--eval_captioning_model_device",
type=str,
default="cpu",
choices=["cpu", "cuda"],
help="Device to run eval captioning model on. By default, runs it on CPU.",
)
parser.add_argument(
"--eval_captioning_model",
type=str,
default="Salesforce/blip2-flan-t5-xl",
choices=["Salesforce/blip2-flan-t5-xl"],
help="Captioning backbone for VQA-type evals.",
)
parser.add_argument(
"--captioning_model",
type=str,
default="Salesforce/blip2-flan-t5-xl",
choices=["Salesforce/blip2-flan-t5-xl", "llava-hf/llava-1.5-7b-hf"],
help="Captioning backbone for accessibility tree alt text.",
)
# lm config
parser.add_argument("--provider", type=str, default="openai")
parser.add_argument("--model", type=str, default="gpt-3.5-turbo-0613")
parser.add_argument("--mode", type=str, default="chat")
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--context_length", type=int, default=0)
parser.add_argument("--max_tokens", type=int, default=384)
parser.add_argument("--stop_token", type=str, default=None)
parser.add_argument(
"--max_retry",
type=int,
help="max retry times to perform generations when parsing fails",
default=1,
)
parser.add_argument(
"--max_obs_length",
type=int,
help="when not zero, will truncate the observation to this length before feeding to the model",
default=3840,
)
# example config
parser.add_argument("--test_start_idx", type=int, default=0)
parser.add_argument("--test_end_idx", type=int, default=910)
# logging related
parser.add_argument("--result_dir", type=str, default="")
args = parser.parse_args()
# check the whether the action space is compatible with the observation space
if (
args.action_set_tag == "id_accessibility_tree"
and args.observation_type
not in [
"accessibility_tree",
"accessibility_tree_with_captioner",
"image_som",
]
):
raise ValueError(
f"Action type {args.action_set_tag} is incompatible with the observation type {args.observation_type}"
)
return args
def early_stop(
trajectory: Trajectory, max_steps: int, thresholds: dict[str, int]
) -> tuple[bool, str]:
"""Check whether need to stop early"""
# reach the max step
num_steps = (len(trajectory) - 1) / 2
if num_steps >= max_steps:
return True, f"Reach max steps {max_steps}"
last_k_actions: list[Action]
action_seq: list[Action]
# Case: parsing failure for k times
k = thresholds["parsing_failure"]
last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment]
if len(last_k_actions) >= k:
if all(
[
action["action_type"] == ActionTypes.NONE
for action in last_k_actions
]
):
return True, f"Failed to parse actions for {k} times"
# Case: same action for k times
k = thresholds["repeating_action"]
last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment]
action_seq = trajectory[1::2] # type: ignore[assignment]
if len(action_seq) == 0:
return False, ""
last_action: Action = action_seq[-1]
if last_action["action_type"] != ActionTypes.TYPE:
if len(last_k_actions) >= k:
if all(
[
is_equivalent(action, last_action)
for action in last_k_actions
]
):
return True, f"Same action for {k} times"
else:
# check the action sequence
if (
sum([is_equivalent(action, last_action) for action in action_seq])
>= k
):
return True, f"Same typing action for {k} times"
return False, ""
def test(
args: argparse.Namespace,
config_file_list: list[str]
) -> None:
scores = []
max_steps = args.max_steps
early_stop_thresholds = {
"parsing_failure": args.parsing_failure_th,
"repeating_action": args.repeating_action_failure_th,
}
if args.observation_type in [
"accessibility_tree_with_captioner",
"image_som",
]:
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
caption_image_fn = image_utils.get_captioning_fn(
device, dtype, args.captioning_model
)
else:
caption_image_fn = None
# Load a (possibly different) captioning model for running VQA evals.
if DATASET == 'visualwebarena':
if (
caption_image_fn
and args.eval_captioning_model == args.captioning_model
):
eval_caption_image_fn = caption_image_fn
else:
eval_caption_image_fn = image_utils.get_captioning_fn(
args.eval_captioning_model_device,
torch.float16
if (
torch.cuda.is_available()
and args.eval_captioning_model_device == "cuda"
)
else torch.float32,
args.eval_captioning_model,
)
else:
caption_image_fn = None
eval_caption_image_fn = None
agent = construct_agent(
args,
captioning_fn=caption_image_fn
if args.observation_type == "accessibility_tree_with_captioner"
else None,
) # NOTE: captioning_fn here is used for captioning input images.
env = ScriptBrowserEnv(
headless=not args.render,
slow_mo=args.slow_mo,
observation_type=args.observation_type,
current_viewport_only=args.current_viewport_only,
viewport_size={
"width": args.viewport_width,
"height": args.viewport_height,
},
save_trace_enabled=args.save_trace_enabled,
sleep_after_execution=args.sleep_after_execution,
# NOTE: captioning_fn here is used for LLM + captioning baselines.
# This can be different from the captioning model used for evals.
captioning_fn=caption_image_fn,
)
for config_file in config_file_list:
try:
render_helper = RenderHelper(
config_file, args.result_dir, args.action_set_tag
)
# Load task.
with open(config_file) as f:
_c = json.load(f)
intent = _c["intent"]
task_id = _c["task_id"]
image_paths = _c.get("image", None)
images = []
# automatically login
if _c["storage_state"]:
cookie_file_name = os.path.basename(_c["storage_state"])
comb = get_site_comb_from_filepath(cookie_file_name)
temp_dir = tempfile.mkdtemp()
# subprocess to renew the cookie
subprocess.run(
[
"python",
"browser_env/auto_login.py",
"--auth_folder",
temp_dir,
"--site_list",
*comb,
]
)
_c["storage_state"] = f"{temp_dir}/{cookie_file_name}"
assert os.path.exists(_c["storage_state"])
# update the config file
config_file = f"{temp_dir}/{os.path.basename(config_file)}"
with open(config_file, "w") as f:
json.dump(_c, f)
# Load input images for the task, if any.
if image_paths is not None:
if isinstance(image_paths, str):
image_paths = [image_paths]
for image_path in image_paths:
# Load image either from the web or from a local path.
if image_path.startswith("http"):
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
input_image = Image.open(requests.get(image_path, stream=True, headers = headers).raw)
else:
input_image = Image.open(image_path)
images.append(input_image)
logger.info(f"[Config file]: {config_file}")
logger.info(f"[Intent]: {intent}")
agent.reset(config_file)
trajectory: Trajectory = []
obs, info = env.reset(options={"config_file": config_file})
state_info: StateInfo = {"observation": obs, "info": info}
trajectory.append(state_info)
meta_data = {"action_history": ["None"]}
while True:
early_stop_flag, stop_info = early_stop(
trajectory, max_steps, early_stop_thresholds
)
if early_stop_flag:
action = create_stop_action(f"Early stop: {stop_info}")
else:
try:
action = agent.next_action(
trajectory,
intent,
images=images,
meta_data=meta_data,
)
except ValueError as e:
# get the error message
action = create_stop_action(f"ERROR: {str(e)}")
trajectory.append(action)
action_str = get_action_description(
action,
state_info["info"]["observation_metadata"],
action_set_tag=args.action_set_tag,
prompt_constructor=agent.prompt_constructor
if isinstance(agent, PromptAgent)
else None,
)
render_helper.render(
action, state_info, meta_data, args.render_screenshot
)
meta_data["action_history"].append(action_str)
if action["action_type"] == ActionTypes.STOP:
break
obs, _, terminated, _, info = env.step(action)
state_info = {"observation": obs, "info": info}
trajectory.append(state_info)
if terminated:
# add a action place holder
trajectory.append(create_stop_action(""))
break
# NOTE: eval_caption_image_fn is used for running eval_vqa functions.
evaluator = evaluator_router(
config_file, captioning_fn=eval_caption_image_fn
)
score = evaluator(
trajectory=trajectory,
config_file=config_file,
page=env.page
)
scores.append(score)
if score == 1:
logger.info(f"[Result] (PASS) {config_file}")
else:
logger.info(f"[Result] (FAIL) {config_file}")
if args.save_trace_enabled:
env.save_trace(
Path(args.result_dir) / "traces" / f"{task_id}.zip"
)
except openai.OpenAIError as e:
logger.info(f"[OpenAI Error] {repr(e)}")
except Exception as e:
logger.info(f"[Unhandled Error] {repr(e)}]")
import traceback
# write to error file
with open(Path(args.result_dir) / "error.txt", "a") as f:
f.write(f"[Config file]: {config_file}\n")
f.write(f"[Unhandled Error] {repr(e)}\n")
f.write(traceback.format_exc()) # write stack trace to file
render_helper.close()
env.close()
if len(scores):
logger.info(f"Average score: {sum(scores) / len(scores)}")
def prepare(args: argparse.Namespace) -> None:
# convert prompt python files to json
from agent.prompts import to_json
to_json.run()
# prepare result dir
result_dir = args.result_dir
if not result_dir:
result_dir = (
f"cache/results_{time.strftime('%Y%m%d%H%M%S', time.localtime())}"
)
if not Path(result_dir).exists():
Path(result_dir).mkdir(parents=True, exist_ok=True)
args.result_dir = result_dir
logger.info(f"Create result dir: {result_dir}")
if not (Path(result_dir) / "traces").exists():
(Path(result_dir) / "traces").mkdir(parents=True)
# log the log file
with open(os.path.join(result_dir, "log_files.txt"), "a+") as f:
f.write(f"{LOG_FILE_NAME}\n")
def get_unfinished(config_files: list[str], result_dir: str) -> list[str]:
result_files = glob.glob(f"{result_dir}/*.html")
task_ids = [
os.path.basename(f).split(".")[0].split("_")[1] for f in result_files
]
unfinished_configs = []
for config_file in config_files:
task_id = os.path.basename(config_file).split(".")[0]
if task_id not in task_ids:
unfinished_configs.append(config_file)
return unfinished_configs
def dump_config(args: argparse.Namespace) -> None:
config_file = Path(args.result_dir) / "config.json"
if not config_file.exists():
with open(config_file, "w") as f:
json.dump(vars(args), f, indent=4)
logger.info(f"Dump config to {config_file}")
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = config()
args.sleep_after_execution = 2.5
prepare(args)
test_config_base_dir = args.test_config_base_dir
test_file_list = []
st_idx = args.test_start_idx
ed_idx = args.test_end_idx
for i in range(st_idx, ed_idx):
test_file_list.append(os.path.join(test_config_base_dir, f"{i}.json"))
test_file_list = get_unfinished(test_file_list, args.result_dir)
print(f"Total {len(test_file_list)} tasks left")
args.render = False
args.render_screenshot = True
args.save_trace_enabled = True
args.current_viewport_only = True
dump_config(args)
test(args, test_file_list)