EasyFL supports numerous models and allows you to customize the model.
To use these models, you can set configurations model: <model_name>
.
We currently provide lenet
, resnet
, resnet18
, resnet50
,vgg9
, and rnn
.
EasyFL allows training with a wide range of models by providing the flexibility to customize models.
You can customize and register models in two ways: register as a class and register as an instance.
Either way, the basic is to inherit and implement the easyfl.models.BaseModel
.
In the example below, we implement and conduct FL training with a CustomizedModel
.
It is applicable when the model does not require extra arguments to initialize.
from torch import nn
import torch.nn.functional as F
import easyfl
from easyfl.models import BaseModel
# Define a customized model class.
class CustomizedModel(BaseModel):
def __init__(self):
super(CustomizedModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 224, padding=(2, 2))
self.conv2 = nn.Conv2d(32, 64, 5, padding=(2, 2))
self.fc1 = nn.Linear(64, 128)
self.fc2 = nn.Linear(128, 42)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 64)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Register the customized model class.
easyfl.register_model(CustomizedModel)
# Initialize EasyFL.
easyfl.init()
# Execute FL training.
easyfl.run()
When the model requires arguments for initialization, we can implement and register a model instance.
from torch import nn
import torch.nn.functional as F
import easyfl
from easyfl.models import BaseModel
# Define a customized model class.
class CustomizedModel(BaseModel):
def __init__(self, num_class):
super(CustomizedModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 224, padding=(2, 2))
self.conv2 = nn.Conv2d(32, 64, 5, padding=(2, 2))
self.fc1 = nn.Linear(64, 128)
self.fc2 = nn.Linear(128, num_class)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 64)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Register the customized model instance.
easyfl.register_model(CustomizedModel(num_class=10))
# Initialize EasyFL.
easyfl.init()
# Execute FL training.
easyfl.run()