-
Notifications
You must be signed in to change notification settings - Fork 1
/
ILP_Supervised_FeatureWeight_MC_AveragePerceptron.py
598 lines (443 loc) · 23.1 KB
/
ILP_Supervised_FeatureWeight_MC_AveragePerceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import fio
import json
import sys
import porter
import NLTKWrapper
import os
import numpy
import NumpyWrapper
import math
import ILP_baseline as ILP
import ILP_MC
import scipy
from feat_vec import FeatureVector
maxIter = 1000
#Stemming
phraseext = ".key" #a list
studentext = ".keys.source" #json
countext = ".dict" #a dictionary
lpext = ".lp"
lpsolext = ".sol"
sumexe = ".ref.summary"
featureext = ".f"
ngramTag = "___"
stage_train = 0
stage_test =1
def LeaveOneLectureOutPermutation():
sheets = range(0,12)
for i in sheets:
train = [str(k) for k in range(len(sheets)) if k != i]
#train = [str(i)]
test = [str(i)]
yield train, test
class ConceptWeightILP_MC:
def __init__(self, ilpdir, matrix_dir, np, L, ngram, MalformedFlilter, featuredir, prefixA,
student_coverage, student_lambda,
minthreshold, weight_normalization, sparse_threshold, no_training, types):
self.ilpdir = ilpdir
self.matrix_dir = matrix_dir
self.np = np
self.L = L
self.ngram = ngram
self.MalformedFlilter = MalformedFlilter
self.featuredir = featuredir
self.prefixA = prefixA
self.student_coverage = student_coverage
self.student_lambda = student_lambda
self.minthreshold = minthreshold
self.weight_normalization = weight_normalization
self.sparse_threshold = sparse_threshold
self.no_training = no_training
self.types = types
self.Weights = FeatureVector()
self.WeightsNeg = FeatureVector()
self.SumWeights = FeatureVector()
self.SumWeightsNeg = FeatureVector()
self.t = 0
def gather_rouges(self):
Header = ['method', 'iter'] + ['R1-R', 'R1-P', 'R1-F', 'R2-R', 'R2-P', 'R2-F', 'RSU4-R', 'RSU4-P', 'RSU4-F']*3
body = []
round, _ = self.get_round(self.train_lectures)
for i in range(0, round+1):
row = ['MC+CW']
row.append(i)
rougename = self.ilpdir+'rouge.sentence.L' +str(config.get_length_limit())+ '.w' + str(self.weight_normalization) + self.prefixA + '.s'+ str(self.sparse_threshold) +'.r'+ str(i) + ".txt"
scores = ILP.getRouges(rougename)
row = row + scores
body.append(row)
newname = self.ilpdir+'rouge.sentence.L' +str(config.get_length_limit())+ '.w' + str(self.weight_normalization) + self.prefixA + '.s'+ str(self.sparse_threshold) + ".txt"
fio.WriteMatrix(newname, body, Header)
def run_crossvalidation(self):
for train_lectures, test_lectures in LeaveOneLectureOutPermutation():
if not self.no_training:
self.train(train_lectures)
for train_lectures, test_lectures in LeaveOneLectureOutPermutation():
self.test(train_lectures, test_lectures)
round, _ = self.get_round(self.train_lectures)
rougename = self.ilpdir+'rouge.sentence.L' +str(config.get_length_limit())+ '.w' + str(self.weight_normalization) + self.prefixA + '.s'+ str(self.sparse_threshold) +'.r'+ str(round) + ".txt"
os.system('python ILP_GetRouge.py '+self.ilpdir)
rougefile = self.ilpdir + "rouge.sentence.L"+str(config.get_length_limit())+".txt"
os.system('mv ' + rougefile + ' ' + rougename)
def initialize_weight(self):
self.Weights = FeatureVector()
self.WeightsNeg = FeatureVector()
self.SumWeights = FeatureVector()
self.SumWeightsNeg = FeatureVector()
self.t = 0
def decode(self):
prefix = self.prefix
ngram = self.ngram
MalformedFlilter = self.MalformedFlilter
featurefile = self.featurefile
student_coverage = self.student_coverage
student_lambda = self.student_lambda
minthreshold = self.minthreshold
weight_normalization = self.weight_normalization
svdfile = self.svdfile
# get each stemmed bigram, sequence the bigram and the phrase
# bigrams: {index:bigram}, a dictionary of bigram index, X
# phrases: {index:phrase}, is a dictionary of phrase index, Y
#PhraseBigram: {phrase, [bigram]}
self.IndexPhrase, self.IndexBigram, self.PhraseBigram = ILP.getPhraseBigram(prefix+phraseext, Ngram=ngram, svdfile=svdfile)
fio.SaveDict(self.IndexPhrase, prefix + ".phrase_index.dict")
fio.SaveDict(self.IndexBigram, prefix + ".bigram_index.dict")
#get weight of bigrams {bigram:weigth}
#BigramTheta = Weights #ILP.getBigramWeight_TF(PhraseBigram, phrases, prefix + countext) # return a dictionary
#get word count of phrases
self.PhraseBeta = ILP.getWordCounts(self.IndexPhrase)
#get {bigram:[phrase]} dictionary
self.BigramPhrase = ILP.getBigramPhrase(self.PhraseBigram)
self.partialPhraseBigram, self.partialBigramPhrase = ILP_MC.getPartialPhraseBigram(self.IndexPhrase, self.IndexBigram, self.prefix + phraseext, svdfile, self.svdpharefile, threshold=self.sparse_threshold)
fio.SaveDict2Json(self.partialPhraseBigram, prefix + ".partialPhraseBigram.dict")
fio.SaveDict2Json(self.partialBigramPhrase, prefix + ".PartialBigramPhrase.dict")
#get {student:phrase}
#sequence students, students = {index:student}
students, self.StudentPhrase = ILP.getStudentPhrase(self.IndexPhrase, prefix + studentext)
fio.SaveDict(students, prefix + ".student_index.dict")
#get {student:weight0}
self.StudentGamma = ILP.getStudentWeight_One(self.StudentPhrase)
self.FeatureVecU = LoadFeatureSet(featurefile)
self.lpfile = prefix
self.formulate_problem()
m = ILP.SloveILP(self.lpfile)
output = self.lpfile + '.L' + str(L) + ".summary"
fio.remove(output)
ILP.ExtractSummaryfromILP(self.lpfile, self.IndexPhrase, output)
def get_round(self, train_lectures):
round = 0
for round in range(maxIter):
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight' + "_" + '.json'
if not fio.IsExist(weightfile):
break
if round != 0:
nextround = round
round = round -1
else:
nextround = 0
self.round = round
return round, nextround
def load_weight(self, train_lectures, round):
weightfile = self.ilpdir + str(0) + '_' + '_'.join(train_lectures) + '_weight' + "_" + '.json'
if not fio.IsExist(weightfile):
self.initialize_weight()
return
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight' + "_" + '.json'
with open(weightfile, 'r') as fin:
self.Weights = FeatureVector(json.load(fin, encoding="utf-8"))
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight_neg' + "_" + '.json'
with open(weightfile, 'r') as fin:
self.WeightsNeg = FeatureVector(json.load(fin, encoding="utf-8"))
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight_sum' + "_" + '.json'
with open(weightfile, 'r') as fin:
self.SumWeights = FeatureVector(json.load(fin, encoding="utf-8"))
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight_neg_sum' + "_" + '.json'
with open(weightfile, 'r') as fin:
self.SumWeightsNeg = FeatureVector(json.load(fin, encoding="utf-8"))
tfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_t'+ '.json'
with open(tfile, 'r') as fin:
self.t = json.load(fin, encoding="utf-8")
def save_weight(self, train_lectures, round):
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight' + "_" + '.json'
with open(weightfile, 'w') as fout:
json.dump(self.Weights, fout, encoding="utf-8",indent=2)
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight_neg' + "_" + '.json'
with open(weightfile, 'w') as fout:
json.dump(self.WeightsNeg, fout, encoding="utf-8",indent=2)
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight_sum' + "_" + '.json'
with open(weightfile, 'w') as fout:
json.dump(self.SumWeights, fout, encoding="utf-8",indent=2)
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight_neg_sum' + "_" + '.json'
with open(weightfile, 'w') as fout:
json.dump(self.SumWeightsNeg, fout, encoding="utf-8",indent=2)
tfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_t'+ '.json'
with open(tfile, 'w') as fout:
json.dump(self.t, fout, encoding="utf-8",indent=2)
def preceptron_update(self):
#generate a system summary
self.decode() #Line 6
#update Weights, and WeightsNeg
#read the summary, update the weight
sumfile = self.prefix + '.L' + str(self.L) + '.summary'
#if len(fio.ReadFile(sumfile)) == 0:#no summary is generated, using a random baseline
# generate_randomsummary(self.prefix, self.L, sumfile)
_, System_IndexBigram, System_PhraseBigram = ILP.getPhraseBigram(sumfile, Ngram=self.ngram, MalformedFlilter=self.MalformedFlilter)
#scan all the bigrams in the responses
_, Response_IndexBigram, Response_PhraseBigram = ILP.getPhraseBigram(self.prefix+phraseext, Ngram=self.ngram, MalformedFlilter=self.MalformedFlilter)
reffile = ExtractRefSummaryPrefix(self.prefix) + '.ref.summary'
_, Model_IndexBigram, Model_PhraseBigram = ILP.getPhraseBigram(reffile, Ngram=self.ngram, MalformedFlilter=self.MalformedFlilter)
Model_BigramDict = getBigramDict(Model_IndexBigram, Model_PhraseBigram)
System_BigramDict = getBigramDict(System_IndexBigram, System_PhraseBigram)
#update the weights
FeatureVecU = LoadFeatureSet(self.featurefile)
pos = 0
neg = 0
pos_bigram = []
neg_bigram = []
for summary, bigrams in Response_PhraseBigram.items():
for bigram in bigrams:
bigramname = Response_IndexBigram[bigram]
if bigramname not in FeatureVecU:
print bigramname
continue
vec = FeatureVector(FeatureVecU[bigramname])
my_flag = False
if bigramname in Model_BigramDict and bigramname not in System_BigramDict:
print bigramname
pos_bigram.append(bigramname)
#self.Weights += vec
#self.WeightsNeg -= vec
my_flag = True
if bigramname not in Model_BigramDict and bigramname in System_BigramDict:
neg_bigram.append(bigramname)
#neg += 1
#self.Weights -= vec
#self.WeightsNeg += vec
my_flag = True
# if my_flag:
# self.SumWeights += self.Weights
# self.SumWeightsNeg += self.WeightsNeg
# self.t += 1
#shuffer the negative
negative_updates_index = numpy.random.permutation(len(neg_bigram))
for bigran in pos_bigram:
assert(bigramname in FeatureVecU)
vec = FeatureVector(FeatureVecU[bigramname])
self.Weights += vec
self.WeightsNeg -= vec
self.SumWeights += self.Weights
self.SumWeightsNeg += self.WeightsNeg
self.t += 1
for i, k in enumerate(negative_updates_index):
if i >= len(pos_bigram): continue
bigramname = neg_bigram[k]
assert(bigramname in FeatureVecU)
vec = FeatureVector(FeatureVecU[bigramname])
self.Weights -= vec
self.WeightsNeg += vec
self.SumWeights += self.Weights
self.SumWeightsNeg += self.WeightsNeg
self.t += 1
print "pos:", len(pos_bigram)
print "neg:", min(len(pos_bigram), len(neg_bigram))
def get_poxfix(self):
return '.' + str(self.L)+ '.w' + str(self.weight_normalization) + self.prefixA + '.s'+ str(self.sparse_threshold)
def get_weight_product(self):
BigramWeights = {}
for bigram in self.BigramPhrase:
bigramname = self.IndexBigram[bigram]
if bigramname in self.FeatureVecU:
fvec = FeatureVector(self.FeatureVecU[bigramname])
#w = (self.Weights - self.WeightsNeg)
#w = self.WeightsNeg.dot(fvec)
if self.stage == stage_train:
w = self.Weights.dot(fvec)
if self.weight_normalization == 4:
w_neg = self.WeightsNeg.dot(fvec)
w = numpy.exp(w - scipy.misc.logsumexp([w, w_neg]))
elif self.stage == stage_test:#use averaged weight, TODO
#w = (self.SumWeights/self.t).dot(fvec)
#AveW = self.SumWeights* (1.0/self.t)
AveW = FeatureVector(self.SumWeights)
w = AveW.scaling(1.0/self.t).dot(fvec)
if self.weight_normalization == 4:
AveWNeg = FeatureVector(self.SumWeightsNeg)
w_neg = AveWNeg.scaling(1.0/self.t).dot(fvec)
w = numpy.exp(w - scipy.misc.logsumexp([w, w_neg]))
else:
print "stage is wrong"
exit(-1)
BigramWeights[bigram] = w
fio.SaveDict(BigramWeights, self.lpfile + '.bigram_weight_raw' + str(self.round) + self.get_poxfix() + '.txt', SortbyValueflag=True)
median_w = numpy.median(BigramWeights.values())
mean_w = numpy.mean(BigramWeights.values())
std_w = numpy.std(BigramWeights.values())
max_w = numpy.max(BigramWeights.values())
min_w = numpy.min(BigramWeights.values())
if self.weight_normalization == 0:
for bigram in BigramWeights:
w = BigramWeights[bigram]
BigramWeights[bigram] = w - self.minthreshold
elif self.weight_normalization == 1:#normalize to 0 ~ 1
for bigram in BigramWeights:
w = BigramWeights[bigram]
if (max_w - min_w) != 0:
BigramWeights[bigram] = (w - min_w)/(max_w - min_w)
elif self.weight_normalization == 2:#normalize to 0 ~ 1
for bigram in BigramWeights:
w = BigramWeights[bigram]
if (max_w - mean_w - std_w) != 0:
BigramWeights[bigram] = (w - mean_w - std_w)/(max_w - mean_w - std_w)
elif self.weight_normalization == 3:#sigmoid
for bigram in BigramWeights:
w = BigramWeights[bigram]
BigramWeights[bigram] = 1 / (1 + math.exp(-w))
else:
pass
return BigramWeights
def formulate_problem(self):
fio.remove(self.lpfile + lpext)
lines = []
#write objective
lines.append("Maximize")
objective = []
BigramWeights = self.get_weight_product()
# if os.name == 'nt':
# import matplotlib.pyplot as plt
# plt.clf()
# plt.hist(BigramWeights.values(), bins=50)
# plt.savefig(self.lpfile + '.png')
fio.SaveDict(BigramWeights, self.lpfile + '.bigram_weight.txt', SortbyValueflag=True)
if self.student_coverage:
for bigram in self.BigramPhrase:
if bigram not in BigramWeights:
lines.append(self.IndexBigram[bigram])
continue
w = BigramWeights[bigram]
if w <= 0: continue
objective.append(" ".join([str(w*self.student_lambda), bigram]))
for student, grama in self.StudentGamma.items():
if self.student_lambda==1:continue
objective.append(" ".join([str(grama*(1-self.student_lambda)), student]))
else:
for bigram in self.BigramPhrase:
if bigram not in BigramWeights: continue
bigramname = self.IndexBigram[bigram]
w = BigramWeights[bigram]
if w <= 0: continue
objective.append(" ".join([str(w), bigram]))
lines.append(" " + " + ".join(objective))
#write constraints
lines.append("Subject To")
lines += ILP.WriteConstraint1(self.PhraseBeta, self.L)
lines += ILP_MC.WriteConstraint2(self.partialBigramPhrase)
lines += ILP_MC.WriteConstraint3(self.partialPhraseBigram)
if self.student_coverage:
lines += ILP.WriteConstraint4(self.StudentPhrase)
indicators = []
for bigram in self.BigramPhrase.keys():
indicators.append(bigram)
for phrase in self.PhraseBeta.keys():
indicators.append(phrase)
if self.student_coverage:
for student in self.StudentGamma.keys():
indicators.append(student)
#write Bounds
lines.append("Bounds")
for indicator in indicators:
lines.append(" " + indicator + " <= " + str(1))
indicators = []
#for bigram in self.BigramPhrase.keys():
# indicators.append(bigram)
for phrase in self.PhraseBeta.keys():
indicators.append(phrase)
#write Integers
lines.append("Integers")
lines.append(" " + " ".join(indicators))
#write End
lines.append("End")
fio.SaveList(lines, self.lpfile + lpext)
def train(self, train_lectures):
self.stage = stage_train
round, nextround = self.get_round(train_lectures)
self.round = round
self.load_weight(train_lectures, round)
for round in range(nextround, nextround+1):
weightfile = self.ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_weight_' + "_" + '.json'
bigramfile = ilpdir + str(round) + '_' + '_'.join(train_lectures) + '_bigram_' + "_" + '.json'
for sheet in train_lectures:
week = int(sheet) + 1
dir = self.ilpdir + str(week) + '/'
for type in self.types:
self.prefix = dir + type + "." + np
self.featurefile = featuredir + str(week) + '/' + type + featureext
self.svdfile = self.matrix_dir + str(week) + '/' + type + prefixA
self.svdpharefile = self.matrix_dir + str(week) + '/' + type + '.' + self.np + ".key"
print "update weight, round ", round
self.preceptron_update()
self.save_weight(train_lectures, round)
def test(self, train_lectures, test_lectures):
self.stage = stage_test
self.train_lectures = train_lectures
round, nextround = self.get_round(train_lectures)
self.load_weight(train_lectures, round)
for sheet in test_lectures:
week = int(sheet) + 1
dir = ilpdir + str(week) + '/'
for type in self.types:
self.prefix = dir + type + "." + np
print "Test: ", self.prefix
self.featurefile = self.featuredir + str(week) + '/' + type + featureext
self.svdfile = self.matrix_dir + str(week) + '/' + type + prefixA
self.svdpharefile = self.matrix_dir + str(week) + '/' + type + '.' + self.np + ".key"
self.decode()
def LoadFeatureSet(featurename):
with open(featurename, 'r') as fin:
featureV = json.load(fin)
return featureV
def getLastIndex(BigramIndex):
maxI = 1
for bigram in BigramIndex.values():
if int(bigram[1:]) > maxI:
maxI = int(bigram[1:])
return maxI
def ExtractRefSummaryPrefix(prefix):
key = prefix.rfind('.')
if key==-1:
return prefix
return prefix[:key]
def getBigramDict(IndexBigram, PhraseBigram):
dict = {}
for phrase, bigrams in PhraseBigram.items():
for bigram in bigrams:
bigramname = IndexBigram[bigram]
if bigramname not in dict:
dict[bigramname] = 0
dict[bigramname] = dict[bigramname] + 1
return dict
if __name__ == '__main__':
from config import ConfigFile
config = ConfigFile()
matrix_dir = config.get_matrix_dir()
ilpdir = "../../data/ILP_Sentence_Supervised_FeatureWeightingAveragePerceptronMC/"
featuredir = ilpdir
MalformedFlilter = False
ngrams = config.get_ngrams()
for Lambda in [config.get_student_lambda()]:
for L in [config.get_length_limit()]:
for np in ['sentence']:
rank = config.get_rank_max()
Lambda = config.get_softImpute_lambda()
if rank == 0:
prefixA = '.org.softA'
else:
prefixA = '.' + str(rank) + '_' + str(Lambda) + '.softA'
ilp = ConceptWeightILP_MC(ilpdir, matrix_dir, np, L, ngrams, MalformedFlilter, featuredir, prefixA = prefixA,
student_coverage = config.get_student_coverage(),
student_lambda = config.get_student_lambda(),
minthreshold=config.get_perceptron_threshold(),
weight_normalization=config.get_weight_normalization(), sparse_threshold=config.get_sparse_threshold(),
no_training=config.get_no_training(), types = config.get_types())
for iter in range(config.get_perceptron_maxIter()):
ilp.run_crossvalidation()
ilp.gather_rouges()
print "done"