-
Notifications
You must be signed in to change notification settings - Fork 2
/
libc_partition.cc
275 lines (243 loc) · 7.85 KB
/
libc_partition.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#include "libc_partition.h"
#include <iostream>
#include <string>
#include <vector>
#include <stdlib.h> /* srand, rand */
#include <time.h> /* time */
#include <cstdlib>
#include <math.h>
#include <assert.h>
#include <unordered_set>
#include <cstdint>
#include <bits/stdc++.h>
#include <sys/time.h>
#include <cilk/cilk.h>
#include <string>
#include <alloca.h>
#include <limits.h>
using namespace std;
/*
* Copies the partition function used in libc. See
* https://github.com/lattera/glibc/blob/master/stdlib/qsort.c The
* only modifications are: we use only the portion of the code used
* for partitioning, and use the fact that we are partitioning
* integers to replace byte-wise moves of objects with simply moving
* around integers, and to replace function-call comparisions with
* standard integer comparison. Returns number of elements in left
* part of partition.
*/
uint64_t libc_partition(int64_t *array, uint64_t n, int64_t pivot) {
if (n == 0) return 0;
int64_t *left_ptr = array;
int64_t *right_ptr = array + n - 1;
do
{
while (*left_ptr < pivot)
left_ptr ++;
while (*right_ptr > pivot)
right_ptr --;
if (left_ptr < right_ptr)
{
int64_t tmp = *left_ptr;
*left_ptr = *right_ptr;
*right_ptr = tmp;
left_ptr ++;
right_ptr --;
}
else if (left_ptr == right_ptr)
{
left_ptr ++;
right_ptr --;
break;
}
}
while (left_ptr <= right_ptr);
return left_ptr - array;
}
// Like libc_partition but places all elements <= pivot on one side.
uint64_t libc_partition_strict(int64_t *array, uint64_t n, int64_t pivot) {
if (n == 0) return 0;
int64_t *left_ptr = array;
int64_t *right_ptr = array + n - 1;
do
{
while (*left_ptr <= pivot)
left_ptr ++;
while (*right_ptr > pivot)
right_ptr --;
if (left_ptr < right_ptr)
{
int64_t tmp = *left_ptr;
*left_ptr = *right_ptr;
*right_ptr = tmp;
left_ptr ++;
right_ptr --;
}
else
{
break;
}
}
while (left_ptr <= right_ptr);
return left_ptr - array;
}
/* Discontinue quicksort algorithm when partition gets below this size.
This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4
/* Stack node declarations used to store unfulfilled partition obligations. */
typedef struct
{
int64_t *lo;
int64_t *hi;
} stack_node;
/* The next 4 #defines implement a very fast in-line stack abstraction. */
/* The stack needs log (total_elements) entries (we could even subtract
log(MAX_THRESH)). Since total_elements has type size_t, we get as
upper bound for log (total_elements):
bits per byte (CHAR_BIT) * sizeof(size_t). */
#define STACK_SIZE (CHAR_BIT * sizeof(uint64_t))
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)
/*
* Copies the sort function used in libc. See
* https://github.com/lattera/glibc/blob/master/stdlib/qsort.c The
* only modifications are: we use only the portion of the code used
* for partitioning, and use the fact that we are partitioning
* integers to replace byte-wise moves of objects with simply moving
* around integers, and to replace function-call comparisions with
* standard integer comparison.
*/
void libc_quicksort (void *const pbase, size_t total_elems)
{
int64_t *base_ptr = (int64_t *) pbase;
const size_t max_thresh = MAX_THRESH;
if (total_elems == 0)
/* Avoid lossage with unsigned arithmetic below. */
return;
if (total_elems > MAX_THRESH) {
int64_t *lo = base_ptr;
int64_t *hi = &lo[total_elems - 1];
stack_node stack[STACK_SIZE];
stack_node *top = stack;
PUSH (NULL, NULL);
while (STACK_NOT_EMPTY){
int64_t *left_ptr;
int64_t *right_ptr;
/* Select median value from among LO, MID, and HI. Rearrange
LO and HI so the three values are sorted. This lowers the
probability of picking a pathological pivot value and
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
the while loops. */
int64_t *mid = lo + ((hi - lo) >> 1);
/* Using strict < and > for the next two if statements is
* actually _very_ important. It ensures that if almost all the
* elements = the pivot, we still partition roughly equally.
*/
if (*mid < *lo) {
int64_t tmp = *mid;
*mid = *lo;
*lo = tmp;
}
if (*hi < *mid) {
int64_t tmp = *mid;
*mid = *hi;
*hi = tmp;
} else {
goto jump_over;
}
if (*mid < *lo) {
int64_t tmp = *mid;
*mid = *lo;
*lo = tmp;
}
jump_over:;
int64_t pivot = *mid;
left_ptr = lo + 1;
right_ptr = hi - 1;
do {
while (*left_ptr < pivot)
left_ptr ++;
while (*right_ptr > pivot)
right_ptr --;
if (left_ptr < right_ptr) {
int64_t tmp = *left_ptr;
*left_ptr = *right_ptr;
*right_ptr = tmp;
left_ptr ++;
right_ptr --;
} else if (left_ptr == right_ptr) {
left_ptr ++;
right_ptr --;
break;
}
} while (left_ptr <= right_ptr);
/* Set up pointers for next iteration. First determine whether
left and right partitions are below the threshold size. If so,
ignore one or both. Otherwise, push the larger partition's
bounds on the stack and continue sorting the smaller one. */
if ((size_t) (right_ptr - lo) <= max_thresh) {
if ((size_t) (hi - left_ptr) <= max_thresh)
/* Ignore both small partitions. */
POP (lo, hi);
else
/* Ignore small left partition. */
lo = left_ptr;
}
else if ((size_t) (hi - left_ptr) <= max_thresh)
/* Ignore small right partition. */
hi = right_ptr;
else if ((right_ptr - lo) > (hi - left_ptr)) {
/* Push larger left partition indices. */
PUSH (lo, right_ptr);
lo = left_ptr;
} else {
/* Push larger right partition indices. */
//cout<<(int)(stack - top)<<endl;
PUSH (left_ptr, hi);
hi = right_ptr;
}
}
}
/* Once the BASE_PTR array is partially sorted by quicksort the rest
is completely sorted using insertion sort, since this is efficient
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
of the array to sort, and END_PTR points at the very last element in
the array (*not* one beyond it!). */
#define min(x, y) ((x) < (y) ? (x) : (y))
{
int64_t *const end_ptr = &base_ptr[(total_elems - 1)];
int64_t *tmp_ptr = base_ptr;
int64_t *thresh = min(end_ptr, base_ptr + max_thresh);
int64_t *run_ptr;
/* Find smallest element in first threshold and place it at the
array's beginning. This is the smallest array element,
and the operation speeds up insertion sort's inner loop. */
for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr ++)
if (*run_ptr < *tmp_ptr)
tmp_ptr = run_ptr;
if (tmp_ptr != base_ptr) {
int64_t tmp = *tmp_ptr;
*tmp_ptr = *base_ptr;
*base_ptr = tmp;
}
/* Insertion sort, running from left-hand-side up to right-hand-side. */
run_ptr = base_ptr + 1;
while ((run_ptr += 1) <= end_ptr) {
tmp_ptr = run_ptr - 1;
while (*run_ptr < *tmp_ptr)
tmp_ptr --;
tmp_ptr ++;
if (tmp_ptr != run_ptr) {
int64_t tmp = *run_ptr;
int64_t* trav = tmp_ptr;
while (trav <= run_ptr) {
int64_t tmp2 = *trav;
*trav = tmp;
tmp = tmp2;
trav++;
}
}
}
}
}