-
Notifications
You must be signed in to change notification settings - Fork 0
/
alternativestudies.tex
976 lines (912 loc) · 41.4 KB
/
alternativestudies.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
\chapter{Alternative Fit Studies}
A number of compatibility studies were performed, comparing subsets of data and using alternative fit models.
The data-subset results presented here were not used in the full oscillation analysis, but are part of the validations of the input models and fitting framework. The alternative model fits were used to inform choices in the interaction model used for the final fits.
These fits were all run using the uniform-rectangular fit binning and 574 merged detector bins.
\section{FGD1 and FGD2 Only Fits}
As discussed in Section \ref{sec:fgd}, FGD1 and FGD2 have different target materials. FGD2 has water layers, and so contains a significant amount of $^{16}$O, whereas FGD1 has only plastic scintillator (C$_8$H$_8$) layers. The constraint on $^{16}$O only parameters therefore comes only from FGD2.
The location of the FGDs also causes differences in reconstruction between the two subdetectors. FGD1 has two TPCs downstream of it, and so performs more accurate reconstruction for forward-going tracks, whereas FGD2 has two TPCs upstream of it, and so performs more accurate reconstruction for backward going-tracks.
To investigate the compatibility of the FGD1 and FGD2 samples, fits were run using each independently. There is approximately the same amount of data in the FGD1 and FGD2 sample, so the constraining power of each is expected to be similar.
The results for the flux parameters are shown in Figures \ref{fig:fgdfluxND} and \ref{fig:fgdfluxSK}, along with the full FGD1 and FGD2 fit. The postfit values of the FGD1 and FGD2 only fits are consistently within the postfit uncertainties of both each other, and the full fit. The high pulls at lower energies are seen in all fits. The gradient of the decrease in pull with increasing energy shows some small discrepancies, but this is to be expected given the high correlations between the flux parameters.
The \SK flux parameters have very similar behaviour to the ND flux parameters, as is expected as they are only constrained by their prior correlations.
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/fgdfits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/fgdfits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_0}
\caption{ND FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_1}
\caption{ND FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_2}
\caption{ND FHC $\nu_e$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_3}
\caption{ND FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_4}
\caption{ND RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_5}
\caption{ND RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_6}
\caption{ND RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_7}
\caption{ND RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{ND280 flux parameters for the FGD1 and 2 only fits.}
\label{fig:fgdfluxND}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/fgdfits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/fgdfits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_8}
\caption{\SK FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_9}
\caption{\SK FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_10}
\caption{\SK FHC $\nu_e$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_11}
\caption{\SK FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_12}
\caption{\SK RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_13}
\caption{\SK RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_14}
\caption{\SK RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fgdfitsflux_15}
\caption{\SK RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{\SK flux parameters for the FGD1 and 2 only fits.}
\label{fig:fgdfluxSK}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/fgdfits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/fgdfits_leg}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fgdfitsxsec_1}
\caption{CC 0$\pi$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fgdfitsxsec_2}
\caption{$Q^2$ and $E_{\mathrm{b}}$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fgdfitsxsec_3}
\caption{CC 1$\pi$, $\nu_e$, CC DIS, CC multi-$\pi$ and CC Coh.}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fgdfitsxsec_4}
\caption{NC}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fgdfitsxsec_5}
\caption{$\pi$ FSI}
\end{subfigure}
\caption{Interaction parameters for the FGD1 and 2 only fits.}
\label{fig:fgdxsec}
\end{figure}
The interaction parameters, shown in Figure \ref{fig:FGDEbdata}, have larger differences. $M_{A}^{QE}$ is pushed higher for FGD1 than FGD2, with the full fit value lying between two. The 2p2h $\nu$ normalisation parameter is also higher for FGD1, with the FGD2 value remaining close to nominal as it is for the full fit. The 2p2h shape parameters have large differences. For FGD2, 2p2h shape C is pushed to its upper bound at $\sim$2, whereas it is only pushed to $\sim$1.3 for FGD1. This is interesting as both FGDs are able to constrain the parameter. For the full fit, the 2p2h shape C postfit value lies between the FGD1 and FGD2 values, despite not affecting any FGD1 events. This is likely driven by the prior correlations between 2p2h shape C and O.
The shape of the increase in $Q^2$ parameters is slightly different between the FGD1 and FGD2 fits, but all are within uncertainty of each other.
The $E_{\mathrm{b}}$ parameters are significantly higher for FGD1. As discussed in Section \ref{sec:extrac}, as these parameters are non-Gaussian it is important to inspect the full distributions as well as the extracted values. These are shown in Figure \ref{fig:FGDEbdata}. For $E_{\mathrm{b}} \nu$ C, there is clearly a strong peak much higher than for both the FGD2 and full fits. For $E_{\mathrm{b}} \bar{\nu}$ C, there is again a higher peak for FGD1, but the full fit lies between the two subdetector fits. For $E_{\mathrm{b}} \nu$ O there is more overlap between the fits, which is more expected as there is no $^{16}$O in FGD1. However, for $E_{\mathrm{b}} \bar{\nu}$ O, there are different peaks for the different fits, driven by the correlations between the $E_{\mathrm{b}}$ parameters.
The CC DIS BY parameter is higher for FGD1 than FGD2, with the full fit falling between the two. The other CC $1\pi$ and CC Other targetting parameters are more consistent for the two fits. NC 1$\gamma$ and NC Other show some differences, but this is not too concerning as there are low statistics for the interaction modes they affect.
For FSI, the charge exchange parameter has the largest discrepancy, but this is within the postfit uncertainty.
Overall there is fairly good compatibility between the FGD samples. Where there are discrepancies, the full fit value tends to fall between the FGD1 and FGD2 only results. CC DIS BY is the only parameter affecting both $^{12}$C and $^{16}$O events which are not within the uncertainty for the two fits.
\begin{figure}
\centering
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FGD_EB_dial_C_nu}
\caption{$E_{\mathrm{b}}\nu$ C}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FGD_EB_dial_C_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ C}
\end{subfigure} \\
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FGD_EB_dial_O_nu}
\caption{$E_{\mathrm{b}}\nu$ O}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FGD_EB_dial_O_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ O}
\end{subfigure}
\caption{Posterior distributions from the binding energy parameters for the FGD1 and FGD2 only fits.}
\label{fig:FGDEbdata}
\end{figure}
\section{FHC and RHC Only Fits}
For runs 2--4, 8, data was taken in FHC mode, and for runs 5--7, 9, data was taken in RHC mode. To see the compatibility of the model fit to neutrino and anti-neutrino data, fits were running using runs 2--4+8 and runs 5--7+9 separately. As the amount of FHC data is $\sim$3$\times$ larger than for RHC, it is expected there will be larger constraints for the FHC only fit.
The results for the flux parameters are shown in Figures \ref{fig:fhcrhcfluxND} and \ref{fig:fhcrhcfluxSK}. The shape of the pulls are very similar for the three fits, but for RHC only the parameters are consistently closer to nominal than for FHC only, with the full fit value lying between the two. In the FHC fit, the RHC flux parameters are constrained via the prior correlations with the FHC flux parameters, and vice versa.
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/fhcrhcfits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/fhcrhcfits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_0}
\caption{ND FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_1}
\caption{ND FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_2}
\caption{ND FHC $\nu_e$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_3}
\caption{ND FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_4}
\caption{ND RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_5}
\caption{ND RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_6}
\caption{ND RHC $\nu_e$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_7}
\caption{ND RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{ND flux parameters for the FHC and RHC only fits.}
\label{fig:fhcrhcfluxND}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/fhcrhcfits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/fhcrhcfits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_8}
\caption{\SK FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_9}
\caption{\SK FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_10}
\caption{\SK FHC $\nu_e$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_11}
\caption{\SK FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_12}
\caption{\SK RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_13}
\caption{\SK RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_14}
\caption{\SK RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fhcrhcfitsflux_15}
\caption{\SK RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{\SK flux parameters for the FHC and RHC only fits.}
\label{fig:fhcrhcfluxSK}
\end{figure}
The results for the interaction parameters are shown in Figure \ref{fig:fhcrhcxsec}. $M_{A}^{QE}$ is not pushed as high for FHC as RHC, but both are within the postfit uncertainty of the full fit value. The 2p2h $\nu$ normalisation gets a small constraint in the RHC fit from the $\nu$ in $\bar{\nu}$ samples, but the 2p2h $\bar{\nu}$ normalisation gets no constraint in the FHC only fit. The 2p2h C to O normalisation and shape parameters for the FHC and RHC only fits are $1\sigma$ either side of the full fits.
The $Q^2$ normalisations are closer to nominal for RHC, but the shape of the increase with increasing $Q^2$ is similar.
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/fhcrhcfits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/fhcrhcfits_leg}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fhcrhcfitsxsec_1}
\caption{CC 0$\pi$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fhcrhcfitsxsec_2}
\caption{$Q^2$ and $E_{\mathrm{b}}$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fhcrhcfitsxsec_3}
\caption{CC 1$\pi$, $\nu_e$, CC DIS, CC multi-$\pi$ and CC Coh.}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fhcrhcfitsxsec_4}
\caption{NC}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fhcrhcfitsxsec_5}
\caption{$\pi$ FSI}
\end{subfigure}
\caption{Interaction parameters for the FHC and RHC only fits.}
\label{fig:fhcrhcxsec}
\end{figure}
The $E_{\mathrm{b}}$ distributions are shown in Figure \ref{fig:fhcrhcxsec} as they are non-Gaussian and so the single extracted values do not show the whole story. The distributions for $E_{\mathrm{b}} \nu$ C parameter are similar for the FHC and full fits, as would be expected. In the RHC fit, it is only constrained through the prior correlations to the FHC $E_{\mathrm{b}}$ parameters and the wrong-sign background samples. Similarly, $E_{\mathrm{b}} \bar{\nu}$ C is very similar for RHC only and the full fit. As there are no FHC wrong-sign samples, $E_{\mathrm{b}} \bar{\nu}$ C is only constrained through the prior uncertainty and correlations in FHC only fit, and so the postfit value is close to the prior central value. The $E_{\mathrm{b}}$ O parameters are both much more consistent across the three fits.
$M_{A}^{RES}$ is much closer to nominal for RHC, but the full fit favours the FHC value. The BY parameters are both also closer to nominal for RHC, with the full fit values lying between the FHC and RHC only values. The NC parameters are all consistent for the fits, and of the FSI parameters, high energy quasi-elastic is the only systematic for which the postfit values are outside $1\sigma$ of each other, with the full fit favouring the FHC value.
Overall these fits show some tension, with the postfit values being generally closer to nominal for RHC only. However, this is likely because there are lower statistics for RHC, so the contribution to the likelihood from the prior uncertainty becomes more significant.
\begin{figure}
\centering
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FHCRHC_EB_dial_C_nu}
\caption{$E_{\mathrm{b}}\nu$ C}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FHCRHC_EB_dial_C_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ C}
\end{subfigure} \\
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FHCRHC_EB_dial_O_nu}
\caption{$E_{\mathrm{b}}\nu$ O}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/FHCRHC_EB_dial_O_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ O}
\end{subfigure}
\caption{Posterior distributions from the binding energy parameters for the FHC and RHC only fits.}
\label{fig:FHCRHCEbdata}
\end{figure}
\section{New and Old Data Only Fits}
The previous oscillation analysis\cite{PhysRevLett.121.171802} used data from runs 2--6. The addition of runs 7, 8 and 9 for this analysis approximately doubles both the FHC and RHC data. To investigate the compatibility of the new and old data, fits were run using data from just runs 2--6, and just runs 7--9. This will show if unexpected results are coming from the changes in the model or the extra data. There is approximately the same amount of data in each set, and so the constraint is expected to be similar.
The results for the flux parameters are shown in Figures \ref{fig:newolddatafluxND} and \ref{fig:newolddatafluxSK}. They are mostly consistent between the three fits, with the postfit parameters lying within the uncertainty of each other. For runs 7--9, the fluxes tend to be slightly closer to nominal, but the overall shape of the pulls in energy are similar.
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/newolddatafits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/newolddatafits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_0}
\caption{ND FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_1}
\caption{ND FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_2}
\caption{ND FHC $\nu_e$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_3}
\caption{ND FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_4}
\caption{ND RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_5}
\caption{ND RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_6}
\caption{ND RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_7}
\caption{ND RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{ND280 flux parameters for the new and old data only fits.}
\label{fig:newolddatafluxND}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/newolddatafits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/newolddatafits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_8}
\caption{\SK FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_9}
\caption{\SK FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_10}
\caption{\SK FHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_11}
\caption{\SK FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_12}
\caption{\SK RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_13}
\caption{\SK RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_14}
\caption{\SK RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/newolddatafitsflux_15}
\caption{\SK RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{\SK flux parameters for the new and old data only fits.}
\label{fig:newolddatafluxSK}
\end{figure}
The interaction parameters, shown in Figure \ref{fig:newolddataxsec}, show more differences between the fits. $M_{A}^{QE}$ is very consistent, but the 2p2h normalisations are both closer to nominal for runs 2--6, as is 2p2h shape C. Interestingly, the full fit value for 2p2h shape C to O is beyond both the subset fits. The $Q^2$ normalisations are all very similar for the three fits.
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 90mm 0mm 0mm}, clip]{figs/newolddatafits_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 95mm}, clip]{figs/newolddatafits_leg}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/newolddatafitsxsec_1}
\caption{CC 0$\pi$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/newolddatafitsxsec_2}
\caption{$Q^2$ and $E_{\mathrm{b}}$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/newolddatafitsxsec_3}
\caption{CC 1$\pi$, $\nu_e$, CC DIS, CC multi-$\pi$ and CC Coh.}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/newolddatafitsxsec_4}
\caption{NC}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/newolddatafitsxsec_5}
\caption{$\pi$ FSI}
\end{subfigure}
\caption{Interaction parameters for the new and old data only fits.}
\label{fig:newolddataxsec}
\end{figure}
The $E_{\mathrm{b}}$ distributions are shown in Figure \ref{fig:RunsEbdata}, as they are non-Gaussian and so the single extracted values alone are not sufficient. The $E_{\mathrm{b}} \nu$ C and $E_{\mathrm{b}} \nu$ O parameters both have large peaks at higher values for runs 2--6. The full fit prefers the runs 7--9 value for C, and the runs 2--6 value for O. The full fit distributions for the $E_{\mathrm{b}} \bar{\nu}$ C and $E_{\mathrm{b}} \bar{\nu}$ O parameters are both similar to those for runs 7--9. The distributions for runs 2--6 have more peaks, but center around similar values.
As runs 2--6 have a larger proportion of FHC data, it would be expected that more of the full fit constraint on $\nu$ parameters would be coming from runs 2--6, and more of the full fit constraint on $\bar{\nu}$ parameters would be coming from runs 7--9. However, there does not seem to be a general trend of the full fit parameters for $\nu$ or $\bar{\nu}$ being closer to the runs 2--6 or 7--9 values. This is probably because the proportions of FHC/RHC data in each set are vastly different, and so other factors dominate.
For runs 7--9, CC DIS BY is higher and CC BY multi-$\pi$, CC AGKY mult., and CC misc. are lower than for runs 2--6, with the full fit values lying between the two. The rest of the CC $1\pi$ and CC Other targetting parameters are fairly consistent. The inelastic and charge exchange FSI parameters are both closer to nominal for runs 7--9.
Overall, there is some tension between these fits, but nearly all parameters are within $1\sigma$ of the each other. In most cases, the full fit value lies between the runs 2--6 and 7--9 values.
\begin{figure}
\centering
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Runs_EB_dial_C_nu}
\caption{$E_{\mathrm{b}}\nu$ C}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Runs_EB_dial_C_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ C}
\end{subfigure} \\
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Runs_EB_dial_O_nu}
\caption{$E_{\mathrm{b}}\nu$ O}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Runs_EB_dial_O_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ O}
\end{subfigure}
\caption{Posterior distributions from the binding energy parameters for the new and old data only fits.}
\label{fig:RunsEbdata}
\end{figure}
\section{Flat MAQE Prior and Less $Q^2$ Freedom}
Two interaction models were proposed for this analysis. As $M_{A}^{QE}$ affects events with high $Q^{2}$, one model had only five $Q^2$ normalisations (up to 0.25 GeV), but with a flat prior on $M_{A}^{QE}$. The other model invoked a tight prior uncertainty of 0.06 GeV$^2$ on $M_{A}^{QE}$, but had extra high $Q^2$ freedom from the three additional high $Q^2$ normalisations. Fits were ran with both these models.
The comparison of the results for the flux parameters are shown in Figures \ref{fig:comp5q2vs8q2fluxND} and \ref{fig:comp5q2vs8q2fluxSK}. The shape of the pulls in energy are similar for the two fits, but the fluxes are generally slightly lower for the fit with eight $Q^2$ normalisations.
Similar results are seen for the ND280 and \SK flux parameters, as would be expected.
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 130mm 0mm 10mm}, clip]{figs/comp5q2vs8q2_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 70mm}, clip]{figs/comp5q2vs8q2_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux0}
\caption{ND FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux1}
\caption{ND FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux2}
\caption{ND FHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux3}
\caption{ND FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux4}
\caption{ND RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux5}
\caption{ND RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux6}
\caption{ND RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux7}
\caption{ND RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{Comparison of ND280 flux parameters for the five and eight $Q^2$ normalisation models.}
\label{fig:comp5q2vs8q2fluxND}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 130mm 0mm 10mm}, clip]{figs/comp5q2vs8q2_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 70mm}, clip]{figs/comp5q2vs8q2_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux8}
\caption{\SK FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux9}
\caption{\SK FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux10}
\caption{\SK FHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux11}
\caption{\SK FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux12}
\caption{\SK RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux13}
\caption{\SK RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux14}
\caption{\SK RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/comp5q2vs8q2flux15}
\caption{\SK RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{Comparison of \SK flux parameters for the five and eight $Q^2$ normalisation models.}
\label{fig:comp5q2vs8q2fluxSK}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 130mm 0mm 10mm}, clip]{figs/comp5q2vs8q2_leg}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 70mm}, clip]{figs/comp5q2vs8q2_leg}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/comp5q2vs8q2xsec1}
\caption{CC 0$\pi$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/comp5q2vs8q2xsec2}
\caption{$Q^2$ and $E_{\mathrm{b}}$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/comp5q2vs8q2xsec3}
\caption{CC 1$\pi$, $\nu_e$, CC DIS, CC multi-$\pi$ and CC Coh.}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/comp5q2vs8q2xsec4}
\caption{NC}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/comp5q2vs8q2xsec5}
\caption{$\pi$ FSI}
\end{subfigure}
\caption{Comparison of interaction parameters for the five and eight $Q^2$ normalisation models.}
\label{fig:comp5q2vs8q2xsec}
\end{figure}
The interaction parameters are shown in Figure \ref{fig:Q2Ebdata}. $M_{A}^{QE}$ is pushed even higher when it does not have a prior uncertainty. The 2p2h normalisations are lower for having eight $Q^2$ normalisations, and the five low $Q^2$ normalisations themselves are slightly higher. The low $Q^2$ parameters are likely moved by their co-correlations with the fluxes, which control all regions of $Q^2$.
The comparison of the 1D distributions for the $E_{\mathrm{b}}$ parameters are shown in Figure \ref{fig:Q2Ebdata}. There are peaks in similar locations for $E_{\mathrm{b}} \nu$ C, but the lower peak is larger for having five $Q^2$ normalisations, whereas the higher peak is larger for having eight. The other $E_{\mathrm{b}}$ parameters have similar shaped distributions, but with small changes in the relative sizes of peaks causing changes in the constraints, particularly for $E_{\mathrm{b}} \bar{\nu}$ C and $E_{\mathrm{b}} \nu$ O.
The CC $1\pi$, NC, and $\pi$ FSI parameters are all unchanged.
The eight $Q^2$ parameters give better control over high $Q^2$ events and allows the $M_{A}^{QE}$ prior uncertainty to be tuned to external data. For this reason, and as the fit results were similar, it was decided the eight $Q^2$ normalisation with 0.6 GeV$^2$ $M_{A}^{QE}$ prior uncertainty would be used in the final fits. It should be noted that these fits were run before other inputs to the fits were finalised, and so the results aren't the same as those in Section \ref{sec:datafit}, but the conclusions should not be different.
\begin{figure}
\centering
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Q2_EB_dial_C_nu}
\caption{$E_{\mathrm{b}}\nu$ C}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Q2_EB_dial_C_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ C}
\end{subfigure} \\
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Q2_EB_dial_O_nu}
\caption{$E_{\mathrm{b}}\nu$ O}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/Q2_EB_dial_O_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ O}
\end{subfigure}
\caption{Posterior distributions from the binding energy parameters for the five and eight $Q^2$ normalisation models.}
\label{fig:Q2Ebdata}
\end{figure}
\section{Fixing the 2p2ph Energy Dependence Parameters}
The 2p2h energy dependence parameters were found to have no constraint from the near detector fit, as shown in Figure \ref{fig:2p2hEdepdist}. This causes large marginalisation effects, and also can prevent the other near detector fitting group's gradient descent fit from converging. It was therefore decided that the parameters would not be fitted in the near detector analysis.
To make sure this did not have any unintended consequences, fits were run with them free and fixed at their prior central values.
\begin{figure}
\centering
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_Edep_lowEnu.pdf}
\caption{Low Energy $\nu$}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_Edep_lowEnubar.pdf}
\caption{Low Energy $\bar{\nu}$}
\end{subfigure} \\
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_Edep_highEnu.pdf}
\caption{High Energy $\nu$}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_Edep_highEnubar.pdf}
\caption{High Energy $\bar{\nu}$}
\end{subfigure}
\caption{Posterior distributions for the 2p2h energy dependence parameters.}
\label{fig:2p2hEdepdist}
\end{figure}
The results are in Figures \ref{fig:fixed2p2hfluxND}, \ref{fig:fixed2p2hfluxSK}, \ref{fig:fixed2p2hxsec}, and \ref{fig:2p2hEbdata}. As expected, there is very little change in the postfit parameter values. The 2p2h energy dependence parameters were therefore fixed in this analysis, but are free for the full joint fits.
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 130mm 0mm 10mm}, clip]{figs/fixed2p2hfits_leg}
\end{subfigure}\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 70mm}, clip]{figs/fixed2p2hfits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux0}
\caption{ND FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux1}
\caption{ND FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux2}
\caption{ND FHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux3}
\caption{ND FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux4}
\caption{ND RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux5}
\caption{ND RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux6}
\caption{ND RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux7}
\caption{ND RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{Comparison of ND280 flux parameters with 2p2h energy dependence fixed and free.}
\label{fig:fixed2p2hfluxND}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 130mm 0mm 10mm}, clip]{figs/fixed2p2hfits_leg}
\end{subfigure}\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 70mm}, clip]{figs/fixed2p2hfits_leg}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux8}
\caption{\SK FHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux9}
\caption{\SK FHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux10}
\caption{\SK FHC $\nu_e$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux11}
\caption{\SK FHC $\bar{\nu_{e}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux12}
\caption{\SK RHC $\nu_{\mu}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux13}
\caption{\SK RHC $\bar{\nu_{\mu}}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux14}
\caption{\SK RHC $\nu_{e}$}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=0.75\linewidth]{figs/fixed2p2hflux15}
\caption{\SK RHC $\bar{\nu_e}$}
\end{subfigure}
\caption{Comparison of \SK flux parameters with 2p2h energy dependence fixed and free.}
\label{fig:fixed2p2hfluxSK}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 130mm 0mm 10mm}, clip]{figs/fixed2p2hfits_leg}
\end{subfigure}\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=1.0\linewidth, trim={5mm 0mm 0mm 70mm}, clip]{figs/fixed2p2hfits_leg}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fixed2p2hfitsxsec1}
\caption{CC 0$\pi$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fixed2p2hfitsxsec2}
\caption{$Q^2$ and $E_{\mathrm{b}}$}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fixed2p2hfitsxsec3}
\caption{CC 1$\pi$, $\nu_e$, CC DIS, CC multi-$\pi$ and CC Coh.}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fixed2p2hfitsxsec4}
\caption{NC}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{figs/fixed2p2hfitsxsec5}
\caption{$\pi$ FSI}
\end{subfigure}
\caption{Comparison of interaction parameters with 2p2h energy dependence fixed and free.}
\label{fig:fixed2p2hxsec}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_EB_dial_C_nu}
\caption{$E_{\mathrm{b}}\nu$ C}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_EB_dial_C_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ C}
\end{subfigure} \\
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_EB_dial_O_nu}
\caption{$E_{\mathrm{b}}\nu$ O}
\end{subfigure}
\begin{subfigure}{.48\textwidth}
\centering
\includegraphics[width=0.73\linewidth]{figs/2p2h_EB_dial_O_nubar}
\caption{$E_{\mathrm{b}}\bar{\nu}$ O}
\end{subfigure}
\caption{Posterior distributions from the binding energy parameters with 2p2h energy dependence fixed and free.}
\label{fig:2p2hEbdata}
\end{figure}
\newpage