-
Notifications
You must be signed in to change notification settings - Fork 1
/
06_Functions.Rmd
553 lines (376 loc) · 11.9 KB
/
06_Functions.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# Functions
**Learning objectives:**
- How to make functions in R
- What are the parts of a function
- Nested functions
## How to make a simple function in R
Let's imagine the structure of a function:
```{r echo=FALSE, fig.align='center',fig.cap="The black dot on the left is the environment. The two blocks to the right are the function arguments."}
knitr::include_graphics("images/06_functions.png")
```
**Function components**
Functions have three parts, `formals()`, `body()`, and `environment()`.
```{r 06-c01, echo=FALSE, fig.align='center', fig.dim="100%"}
DiagrammeR::mermaid("
graph LR
A{formals}-->B(body)
B-->C(environment)
style A fill:#bbf,stroke:#f66,stroke-width:2px,color:#fff,stroke-dasharray: 5 5
",height = '100%', width = '100%')
```
**Example**
```{r, echo = FALSE, message = FALSE}
coffee_ratings <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-07/coffee_ratings.csv')
library(tidyverse)
```
```{r}
coffee_ratings%>%slice(1:3)%>%select(1:5)
```
```{r, function_example}
avg_points <- function(species){
# this function is for calculating the mean
avg <- coffee_ratings %>%
filter(species == species) %>%
summarise(mean = mean(total_cup_points))
return(avg)
}
```
```{r}
avg_points("Arabica")
```
```{r}
formals(avg_points)
```
```{r}
body(avg_points)
```
```{r}
environment(avg_points)
```
Functions uses attributes, one attribute used by base R is `srcref`, short for **source reference**. It points to the source code used to create the function. It contains code comments and other formatting.
```{r}
attr(avg_points, "srcref")
```
## Primitive functions
Are the core function in base R, such as `sum()`
```{r}
sum
```
Type of primitives:
- builtin
- special
```{r}
typeof(sum)
```
These core functions have components to NULL.
## Anonymous functions
If you don't provide a name to a function
```{r}
lapply(mtcars%>%select(mpg,cyl), function(x) length(unique(x)))
```
```{r}
vector_len <- function(x) {
length(unique(x))
}
```
```{r}
lapply(mtcars%>%select(mpg,cyl), vector_len)
```
**Invoking a function**
```{r}
args <- unique(coffee_ratings$species) %>%
`[[`(1) %>%
as.list()
do.call(avg_points, args)
```
## Function composition
```{r}
square <- function(x) x^2
deviation <- function(x) x - mean(x)
x <- runif(100)
sqrt(mean(square(deviation(x))))
```
```{r}
out <- deviation(x)
out <- square(out)
out <- mean(out)
out <- sqrt(out)
out
```
```{r}
x %>%
deviation() %>%
square() %>%
mean() %>%
sqrt()
```
## More about functions insights
### Lexical scoping
**Rules**
- Name masking
- Functions versus variables
- A fresh start
- Dynamic lookup
**Debugging**
This function
```{r}
g12 <- function() x + 1
x <- 15
g12()
```
```{r}
codetools::findGlobals(g12)
```
You can change the function’s environment to an environment which contains nothing:
```{r}
# environment(g12) <- emptyenv()
# g12()
# Error in x + 1 : could not find function "+"
```
### ... (dot-dot-dot)
**Example**
```{r}
i01 <- function(y, z) {
list(y = y, z = z)
}
i02 <- function(x, ...) {
i01(...)
}
str(i02(x = 1, y = 2, z = 3))
#> List of 2
#> $ y: num 2
#> $ z: num 3
```
### Exiting a function
1. Implicit or explicit returns
2. Invisibility (`<-` most famous function that returns an invisible value)
3. `stop()` to stop a function with an error.
4. Exit handlers
### Function forms
>Everything that exists is an object.
Everything that happens is a function call.
— John Chambers
```{r echo=FALSE}
knitr::include_graphics("images/06_forms.png")
```
---
## Case Study: SIR model function
This is an interesting example taken from a course on Coursera: [Infectious disease modelling-ICL](https://www.coursera.org/specializations/infectious-disease-modelling)
The purpose of this example is to show how to make a model passing through making a function.
First we need to load some useful libraries:
```{r message=FALSE, warning=FALSE, paged.print=FALSE}
library(deSolve)
library(reshape2)
```
Then set the model inputs:
- population size (N)
- number of susceptable (S)
- infected (I)
- recovered (R)
And add the model parameters:
- infection rate ($\beta$)
- recovery rate ($\gamma$)
```{r}
N<- 100000 # population
state_values<- c(S = N -1, # susceptible
I = 1, # infected
R = 0) # recovered
parameters<- c(beta = 1/2, # infection rate days^-1
gamma = 1/4) # recovery rate days^-1
```
Then we set the **time** as an important factor, which defines the length of time we are looking at this model run. It is intended as the time range in which the infections spread out, let’s say that we are aiming to investigate an infection period of 100 days.
```{r}
times<- seq(0, 100, by = 1)
```
Finally, we set up the **SIR model**, the susceptable, infected and recovered model. How do we do that is passing the paramenters through a function of the time, and state.
Within the model function we calculate one more paramenter, the **force of infection**: $\lambda$
```{r}
sir_model<- function(time, state, parameters){
with(as.list(c(state, parameters)),{
N<- S + I + R
lambda = beta * I/N # force of infection
dS<- - lambda * S
dI<- lambda * S - gamma * I
dR<- gamma * I
return(list(c(dS,dI,dR)))
})
}
```
Once we have our **SIR model** function ready, we can calculate the **output** of the model, with the help of the function `ode()` from {deSolve} package.
```{r}
output<- as.data.frame(ode(y = state_values,
times = times,
func = sir_model,
parms = parameters))
output %>% head
```
In addition to our builtin SIR model function we can have a look at:
```{r eval=FALSE, include=T}
?deSolve::ode()
```
It solves **Ordinary Differential Equations**.
```{r}
deSolve:::ode
```
```{r}
methods("ode")
```
---
With the help of the {reshape2} package we use the function `melt()` to reshape the output:
```{r}
melt(output,id="time") %>% head
```
The same as usign `pivot_longer()` function.
```{r}
output%>%
pivot_longer(cols = c("S","I","R"),
names_to="variable",
values_to="values") %>%
arrange(desc(variable)) %>%
head
```
---
Before to proceed with the visualization of the SIR model output we do a bit of investigations.
**What if we want to see how `melt()` function works?**
**What instruments we can use to see inside the function and understand how it works?**
Using just the function name **melt** or `structure()` function with *melt* as an argument, we obtain the same output. To select just the argument of the function we can do `args(melt)`
```{r}
reshape2:::melt
```
```{r}
body(melt)
```
```{r}
formals(melt)
```
```{r}
environment(melt)
```
```{r}
typeof(melt)
```
> "R functions simulate a closure by keeping an explicit reference to the environment that was active when the function was defined."
ref: [closures](https://www.r-bloggers.com/2015/03/using-closures-as-objects-in-r/)
Try with `methods()`, or `print(methods(melt))`: Non-visible functions are asterisked!
> The S3 method name is followed by an asterisk * if the method definition is not exported from the package namespace in which the method is defined.
```{r}
methods("melt", data)
```
```{r}
methods(class="table")
```
```{r eval=FALSE, include=T}
help(UseMethod)
```
We can access to some of the above calls with `getAnywhere()`, for example here is done for "melt.data.frame":
```{r}
getAnywhere("melt.data.frame")
```
References:
- [stackoverflow article](https://stackoverflow.com/questions/11173683/how-can-i-read-the-source-code-for-an-r-function)
- [Rnews bulletin: R Help Desk](https://www.r-project.org/doc/Rnews/Rnews_2006-4.pdf)
---
Going back to out model output visualization.
```{r}
output_full<- melt(output,id="time")
```
```{r}
output_full$proportion<- output_full$value/sum(state_values)
```
```{r}
ggplot(data = output, aes(x = time, y = I)) +
geom_line() +
xlab("Time(days)") +
ylab("Number of Infected") +
labs("SIR Model: prevalence of infection")
```
```{r}
ggplot(output_full, aes(time, proportion, color = variable, group = variable)) +
geom_line() +
xlab("Time(days)") +
ylab("Prevalence") +
labs(color = "Compartment", title = "SIR Model")
```
---
## Meeting Videos
### Cohort 1
`r knitr::include_url("https://www.youtube.com/embed/UwzGhMndWzs")`
### Cohort 2
`r knitr::include_url("https://www.youtube.com/embed/51PMEM4Efb8")`
### Cohort 3
`r knitr::include_url("https://www.youtube.com/embed/Vwuo-e_Ir0s")`
### Cohort 4
`r knitr::include_url("https://www.youtube.com/embed/lg5rzOU6lsg")`
### Cohort 5
`r knitr::include_url("https://www.youtube.com/embed/q8K0Jl5hiV0")`
### Cohort 6
`r knitr::include_url("https://www.youtube.com/embed/BPd6-G9e32I")`
<details>
<summary> Meeting chat log </summary>
```
00:01:11 Oluwafemi Oyedele: Hi, Good evening
00:01:22 Federica Gazzelloni: Hello!
00:43:19 Federica Gazzelloni: https://r4ds.github.io/bookclub-Advanced_R/QandA/docs/welcome.html
00:52:48 Priyanka: sounds good actually
00:52:59 Federica Gazzelloni: 👍🏻
```
</details>
`r knitr::include_url("https://www.youtube.com/embed/GCDXXkBQrGk")`
<details>
<summary> Meeting chat log </summary>
```
00:09:30 Oluwafemi Oyedele: Hi, Good evening
00:10:41 Federica Gazzelloni: Hi
00:14:40 Federica Gazzelloni: that's great!
00:54:24 Trevin: Also, sorry if you are repeating 🙂
00:54:52 Arthur Shaw: @ryan, thank you so much for the awesome synthesis! Could you share your reference list? I'd love to dive more deeply into the material you presented.
00:57:02 Ryan Metcalf: https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf
00:59:32 Trevin: https://github.com/COHHIO/RmData
01:01:48 Ryan Metcalf: https://mastering-shiny.org/
01:02:02 Ryan Metcalf: https://engineering-shiny.org/
01:02:15 Arthur Shaw: @trevin, if you get bored with beepr, move to BRRR ;)
01:02:16 Arthur Shaw: https://github.com/brooke-watson/BRRR
01:09:27 Ryan Metcalf: This is amazing Trevin! I'll take a closer look. Is it ok to reach out to you with any questions?
01:09:43 Trevin: Yeah, feel free to reach out
```
</details>
`r knitr::include_url("https://www.youtube.com/embed/NaiQa_u-j1k")`
<details>
<summary> Meeting chat log </summary>
```
00:05:34 Trevin: I didn't catch that
00:06:02 priyanka gagneja: i won't be presenting I said .. so you two have the stage
00:08:39 Federica Gazzelloni: no worries
00:08:46 Federica Gazzelloni: next time you do it
00:08:56 Federica Gazzelloni: did you sign up?
00:09:45 Trevin: Discord is free: https://discord.gg/rstudioconf2022
00:10:04 Trevin: Free stream link: https://www.rstudio.com/conference/stream
00:24:32 Arthur Shaw: Maybe silly question: is the magrittr pipe an infix function?
00:32:15 Trevin: https://colinfay.me/playing-r-infix-functions/
00:33:23 Arthur Shaw: Maybe another example of an infix function: lubridate's `%within%`
00:33:47 Trevin: That's a good one too ^
00:33:55 priyanka gagneja: yes within would be good.
00:40:13 Arthur Shaw: no
00:49:50 Arthur Shaw: Sorry for dropping in and out. My WiFi router is having issues today--maybe is failing.
01:08:59 Trevin: Looking forward to it 🙂
```
</details>
### Cohort 7
`r knitr::include_url("https://www.youtube.com/embed/tz2z9l41IhU")`
<details>
<summary>Meeting chat log</summary>
```
00:31:54 Ronald Legere: https://en.wikipedia.org/wiki/First-class_function
00:42:55 Ronald Legere: https://en.wikipedia.org/wiki/Immediately_invoked_function_expression
```
</details>
`r knitr::include_url("https://www.youtube.com/embed/AbdcI57vbcg")`
<details>
<summary>Meeting chat log</summary>
```
00:54:02 Ron: Book gives this simple example of when you might want to use prefix form of an infix operator: lapply(list(1:3, 4:5), `+`, 3)
00:56:49 collinberke: https://colinfay.me/playing-r-infix-functions/#:~:text=What%20are%20infix%20functions%3F,%2C%20%2B%20%2C%20and%20so%20on.
01:07:36 Ron: x[3] <- 33
01:07:51 Ron: `[<-`(x,3,value =33)
```
</details>