-
Notifications
You must be signed in to change notification settings - Fork 12
/
resnet.py
861 lines (714 loc) · 36.2 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the preactivation form of Residual Networks
(also known as ResNet v2).
Residual networks (ResNets) were originally proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
The full preactivation 'v2' ResNet variant implemented in this module was
introduced by:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Identity Mappings in Deep Residual Networks. arXiv: 1603.05027
The key difference of the full preactivation 'v2' variant compared to the
'v1' variant in [1] is the use of batch normalization before every weight layer
rather than after.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import math
import tensorflow as tf
_BATCH_NORM_DECAY = 0.997
_BATCH_NORM_EPSILON = 1e-5
## flag should align with imagenet_main.py
# True : ImageNet1000
# False : ImageNet100
FLAG_1000 = True
# FLAG_1000 = False
if FLAG_1000 == True:
_NUM_CLASSES = 1000
else:
_NUM_CLASSES = 100
_BIAS_EPOCHS = 2
################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer,
parse_record_fn, num_epochs=1, num_parallel_calls=1):
"""Given a Dataset with raw records, parse each record into images and labels,
and return an iterator over the records.
Args:
dataset: A Dataset representing raw records
is_training: A boolean denoting whether the input is for training.
batch_size: The number of samples per batch.
shuffle_buffer: The buffer size to use when shuffling records. A larger
value results in better randomness, but smaller values reduce startup
time and use less memory.
parse_record_fn: A function that takes a raw record and returns the
corresponding (image, label) pair.
num_epochs: The number of epochs to repeat the dataset.
num_parallel_calls: The number of records that are processed in parallel.
This can be optimized per data set but for generally homogeneous data
sets, should be approximately the number of available CPU cores.
Returns:
Dataset of (image, label) pairs ready for iteration.
"""
# We prefetch a batch at a time, This can help smooth out the time taken to
# load input files as we go through shuffling and processing.
dataset = dataset.prefetch(buffer_size=batch_size)
if is_training:
# Shuffle the records. Note that we shuffle before repeating to ensure
# that the shuffling respects epoch boundaries.
dataset = dataset.shuffle(buffer_size=shuffle_buffer)
# If we are training over multiple epochs before evaluating, repeat the
# dataset for the appropriate number of epochs.
dataset = dataset.repeat(num_epochs)
# Parse the raw records into images and labels
dataset = dataset.map(lambda image, label: parse_record_fn(image, label, is_training),
num_parallel_calls=num_parallel_calls)
dataset = dataset.batch(batch_size)
# Operations between the final prefetch and the get_next call to the iterator
# will happen synchronously during run time. We prefetch here again to
# background all of the above processing work and keep it out of the
# critical training path.
dataset = dataset.prefetch(1)
return dataset
################################################################################
# Functions building the ResNet model.
################################################################################
def batch_norm_relu(inputs, training, data_format):
"""Performs a batch normalization followed by a ReLU."""
# We set fused=True for a significant performance boost. See
# https://www.tensorflow.org/performance/performance_guide#common_fused_ops
inputs = tf.layers.batch_normalization(
inputs=inputs, axis=1 if data_format == 'channels_first' else 3,
momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True,
scale=True, training=training, fused=True)
inputs = tf.nn.relu(inputs)
return inputs
def fixed_padding(inputs, kernel_size, data_format):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
A tensor with the same format as the input with the data either intact
(if kernel_size == 1) or padded (if kernel_size > 1).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
[pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
"""Strided 2-D convolution with explicit padding."""
# The padding is consistent and is based only on `kernel_size`, not on the
# dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format)
return tf.layers.conv2d(
inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(),
data_format=data_format)
def building_block(inputs, filters, training, projection_shortcut, strides,
data_format):
"""Standard building block for residual networks with BN before convolutions.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the convolutions.
training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block.
"""
shortcut = inputs
inputs = batch_norm_relu(inputs, training, data_format)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, training, data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format)
return inputs + shortcut
def bottleneck_block(inputs, filters, training, projection_shortcut,
strides, data_format):
"""Bottleneck block variant for residual networks with BN before convolutions.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first two convolutions. Note
that the third and final convolution will use 4 times as many filters.
training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block.
"""
shortcut = inputs
inputs = batch_norm_relu(inputs, training, data_format)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm_relu(inputs, training, data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, training, data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format)
return inputs + shortcut
def block_layer(inputs, filters, block_fn, blocks, strides, training, name,
data_format):
"""Creates one layer of blocks for the ResNet model.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first convolution of the layer.
block_fn: The block to use within the model, either `building_block` or
`bottleneck_block`.
blocks: The number of blocks contained in the layer.
strides: The stride to use for the first convolution of the layer. If
greater than 1, this layer will ultimately downsample the input.
training: Either True or False, whether we are currently training the
model. Needed for batch norm.
name: A string name for the tensor output of the block layer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block layer.
"""
# Bottleneck blocks end with 4x the number of filters as they start with
filters_out = 4 * filters if block_fn is bottleneck_block else filters
def projection_shortcut(inputs):
return conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = block_fn(inputs, filters, training, projection_shortcut, strides,
data_format)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, training, None, 1, data_format)
return tf.identity(inputs, name)
class Model(object):
"""Base class for building the Resnet v2 Model.
"""
def __init__(self, resnet_size, num_classes, num_filters, kernel_size,
conv_stride, first_pool_size, first_pool_stride,
second_pool_size, second_pool_stride, block_fn, block_sizes,
block_strides, final_size, data_format=None):
"""Creates a model for classifying an image.
Args:
resnet_size: A single integer for the size of the ResNet model.
num_classes: The number of classes used as labels.
num_filters: The number of filters to use for the first block layer
of the model. This number is then doubled for each subsequent block
layer.
kernel_size: The kernel size to use for convolution.
conv_stride: stride size for the initial convolutional layer
first_pool_size: Pool size to be used for the first pooling layer.
If none, the first pooling layer is skipped.
first_pool_stride: stride size for the first pooling layer. Not used
if first_pool_size is None.
second_pool_size: Pool size to be used for the second pooling layer.
second_pool_stride: stride size for the final pooling layer
block_fn: Which block layer function should be used? Pass in one of
the two functions defined above: building_block or bottleneck_block
block_sizes: A list containing n values, where n is the number of sets of
block layers desired. Each value should be the number of blocks in the
i-th set.
block_strides: List of integers representing the desired stride size for
each of the sets of block layers. Should be same length as block_sizes.
final_size: The expected size of the model after the second pooling.
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
"""
self.resnet_size = resnet_size
if not data_format:
data_format = (
'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
self.data_format = data_format
self.num_classes = num_classes
self.num_filters = num_filters
self.kernel_size = kernel_size
self.conv_stride = conv_stride
self.first_pool_size = first_pool_size
self.first_pool_stride = first_pool_stride
self.second_pool_size = second_pool_size
self.second_pool_stride = second_pool_stride
self.block_fn = block_fn
self.block_sizes = block_sizes
self.block_strides = block_strides
self.final_size = final_size
def __call__(self, inputs, training):
"""Add operations to classify a batch of input images.
Args:
inputs: A Tensor representing a batch of input images.
training: A boolean. Set to True to add operations required only when
training the classifier.
Returns:
A logits Tensor with shape [<batch_size>, self.num_classes].
"""
if self.data_format == 'channels_first':
# Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# This provides a large performance boost on GPU. See
# https://www.tensorflow.org/performance/performance_guide#data_formats
inputs = tf.transpose(inputs, [0, 3, 1, 2])
inputs = conv2d_fixed_padding(
inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size,
strides=self.conv_stride, data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_conv')
if self.first_pool_size:
inputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=self.first_pool_size,
strides=self.first_pool_stride, padding='SAME',
data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
for i, num_blocks in enumerate(self.block_sizes):
num_filters = self.num_filters * (2**i)
inputs = block_layer(
inputs=inputs, filters=num_filters, block_fn=self.block_fn,
blocks=num_blocks, strides=self.block_strides[i],
training=training, name='block_layer{}'.format(i + 1),
data_format=self.data_format)
inputs = batch_norm_relu(inputs, training, self.data_format)
inputs = tf.layers.average_pooling2d(
inputs=inputs, pool_size=self.second_pool_size,
strides=self.second_pool_stride, padding='VALID',
data_format=self.data_format)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(inputs, [-1, self.final_size])
inputs = tf.layers.dense(inputs=inputs, units=self.num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs
################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
batch_size, batch_denom, num_images, boundary_epochs, decay_rates):
"""Get a learning rate that decays step-wise as training progresses.
Args:
batch_size: the number of examples processed in each training batch.
batch_denom: this value will be used to scale the base learning rate.
`0.1 * batch size` is divided by this number, such that when
batch_denom == batch_size, the initial learning rate will be 0.1.
num_images: total number of images that will be used for training.
boundary_epochs: list of ints representing the epochs at which we
decay the learning rate.
decay_rates: list of floats representing the decay rates to be used
for scaling the learning rate. Should be the same length as
boundary_epochs.
Returns:
Returns a function that takes a single argument - the number of batches
trained so far (global_step)- and returns the learning rate to be used
for training the next batch.
"""
initial_learning_rate = 0.1 * batch_size / batch_denom
batches_per_epoch = num_images / batch_size
# Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
vals = [initial_learning_rate * decay for decay in decay_rates]
def learning_rate_fn(global_step):
global_step = tf.cast(global_step, tf.int32)
return tf.train.piecewise_constant(global_step, boundaries, vals)
return learning_rate_fn
def resnet_model_fn(features, labels, mode, model_class,
resnet_size, weight_decay, learning_rate_fn, momentum,
data_format, itera, nb_groups, restore_model_dir, flag_bias, loss_filter_fn=None):
"""Shared functionality for different resnet model_fns.
Initializes the ResnetModel representing the model layers
and uses that model to build the necessary EstimatorSpecs for
the `mode` in question. For training, this means building losses,
the optimizer, and the train op that get passed into the EstimatorSpec.
For evaluation and prediction, the EstimatorSpec is returned without
a train op, but with the necessary parameters for the given mode.
Args:
features: tensor representing input images
labels: tensor representing class labels for all input images
mode: current estimator mode; should be one of
`tf.estimator.ModeKeys.TRAIN`, `EVAL`, `PREDICT`
model_class: a class representing a TensorFlow model that has a __call__
function. We assume here that this is a subclass of ResnetModel.
resnet_size: A single integer for the size of the ResNet model.
weight_decay: weight decay loss rate used to regularize learned variables.
learning_rate_fn: function that returns the current learning rate given
the current global_step
momentum: momentum term used for optimization
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
loss_filter_fn: function that takes a string variable name and returns
True if the var should be included in loss calculation, and False
otherwise. If None, batch_normalization variables will be excluded
from the loss.
Returns:
EstimatorSpec parameterized according to the input params and the
current mode.
"""
# Generate a summary node for the images
tf.summary.image('images', features, max_outputs=6)
model = model_class(resnet_size, data_format)
resnet_features, logits, variables_graph, dis_logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)
# for PREDICT
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
'features': resnet_features
}
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# for EVALUATE
nb_cl = int(_NUM_CLASSES / nb_groups)
if mode == tf.estimator.ModeKeys.EVAL:
if itera == 0:
all_cl = range((itera+1)*nb_cl)
label_all_classes = tf.stack([labels[:,i] for i in all_cl],axis=1)
pred_all_classes = tf.stack([logits[:,i] for i in all_cl],axis=1)
# pred_all_classes = tf.stack([bias_logits[:,i] for i in all_cl],axis=1)
predictions = {
'classes': tf.argmax(pred_all_classes, axis=1),
}
### top-1 accuracy
# accuracy = tf.metrics.accuracy(
# tf.argmax(label_all_classes, axis=1), predictions['classes'])
### top-5 for imagenet
accuracy = tf.metrics.mean(tf.nn.in_top_k(predictions=pred_all_classes, targets=tf.argmax(label_all_classes, axis=1), k=5))
metrics = {'accuracy': accuracy}
cross_entropy = tf.losses.softmax_cross_entropy(
logits=pred_all_classes, onehot_labels=label_all_classes)
return tf.estimator.EstimatorSpec(mode=mode, loss=cross_entropy, eval_metric_ops=metrics)
else:
all_cl = range((itera+1)*nb_cl)
initial_cl = range(itera*nb_cl)
new_cl = range(itera*nb_cl, (itera+1)*nb_cl)
label_all_classes = tf.stack([labels[:,i] for i in all_cl],axis=1)
pred_initial_classes = tf.stack([logits[:,i] for i in initial_cl],axis=1)
pred_new_classes = tf.stack([logits[:,i] for i in new_cl],axis=1)
print (restore_model_dir)
bias_restore_model_dir = restore_model_dir.replace(str(itera-1),str(itera))
bias_restore_model_dir = bias_restore_model_dir.replace("classifier", "bias")
print (bias_restore_model_dir)
beta = tf.train.load_variable(bias_restore_model_dir, 'bias_opt/beta')
gamma = tf.train.load_variable(bias_restore_model_dir, 'bias_opt/gamma')
pred_all_classes = tf.concat([pred_initial_classes, beta * pred_new_classes + gamma],axis=1)
pred_all_classes_before = tf.concat([pred_initial_classes, pred_new_classes],axis=1)
predictions = {
'classes': tf.argmax(pred_all_classes, axis=1),
'classes_before': tf.argmax(pred_all_classes_before, axis=1),
}
### top-1 accuracy
# accuracy = tf.metrics.accuracy(
# tf.argmax(label_all_classes, axis=1), predictions['classes'])
# accuracy_before = tf.metrics.accuracy(
# tf.argmax(label_all_classes, axis=1), predictions['classes_before'])
### top-5 accuracy
accuracy = tf.metrics.mean(tf.nn.in_top_k(predictions=pred_all_classes, targets=tf.argmax(label_all_classes, axis=1), k=5))
accuracy_before = tf.metrics.mean(tf.nn.in_top_k(predictions=pred_all_classes_before, targets=tf.argmax(label_all_classes, axis=1), k=5))
metrics = {'accuracy': accuracy,
'accuracy_before' : accuracy_before}
cross_entropy = tf.losses.softmax_cross_entropy(
logits=pred_all_classes, onehot_labels=label_all_classes)
return tf.estimator.EstimatorSpec(mode=mode, loss=cross_entropy, eval_metric_ops=metrics)
## for TRAIN
print (flag_bias, not flag_bias, itera == 0, )
if itera == 0 and (not flag_bias):
print ("enter classifier training for the first increment")
all_cl = range((itera+1)*nb_cl)
label_all_classes = tf.stack([labels[:,i] for i in all_cl],axis=1)
pred_all_classes = tf.stack([logits[:,i] for i in all_cl],axis=1)
elif not flag_bias:
print ("enter classifier training")
initial_cl = range(itera*nb_cl)
all_cl = range((itera+1)*nb_cl)
# for classification
label_initial_classes = tf.stack([labels[:,i] for i in initial_cl],axis=1)
pred_initial_classes = tf.stack([logits[:,i] for i in initial_cl],axis=1)
label_all_classes = tf.stack([labels[:,i] for i in all_cl],axis=1)
pred_all_classes = tf.stack([logits[:,i] for i in all_cl],axis=1)
# for distilling
if itera == 1:
# the second increment does not need the bias correction in training the classifier
distill_pred_initial_classes = tf.stack([dis_logits[:,i] for i in initial_cl],axis=1)
else:
# apply bias corrected classifier for distilling loss
assert(itera >= 2)
pre_initial_cl = range((itera-1)*nb_cl)
pre_new_cl = range((itera-1)*nb_cl, (itera)*nb_cl)
distill_pred_pre_initial_classes = tf.stack([dis_logits[:,i] for i in pre_initial_cl],axis=1)
distill_pred_pre_new_classes = tf.stack([dis_logits[:,i] for i in pre_new_cl],axis=1)
print (restore_model_dir)
bias_restore_model_dir = restore_model_dir.replace("classifier", "bias")
print (bias_restore_model_dir)
beta = tf.train.load_variable(bias_restore_model_dir, 'bias_opt/beta')
gamma = tf.train.load_variable(bias_restore_model_dir, 'bias_opt/gamma')
print (beta, gamma)
distill_pred_initial_classes = tf.concat([distill_pred_pre_initial_classes, beta * distill_pred_pre_new_classes + gamma],axis=1)
else:
print ("enter bias correction optimization")
initial_cl = range(itera*nb_cl)
new_cl = range(itera*nb_cl, (itera+1)*nb_cl)
all_cl = range((itera+1)*nb_cl)
pred_initial_classes = tf.stack([logits[:,i] for i in initial_cl],axis=1)
pred_new_classes = tf.stack([logits[:,i] for i in new_cl],axis=1)
label_all_classes = tf.stack([labels[:,i] for i in all_cl],axis=1)
with tf.variable_scope('bias_opt'):
beta_variable = tf.get_variable("beta", initializer = 1.0)
gamma_variable = tf.get_variable("gamma", initializer = 0.0)
scope = tf.get_variable_scope()
scope.reuse_variables()
variables_bias = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='bias_opt')
pred_all_classes = tf.concat([pred_initial_classes, beta_variable * pred_new_classes + gamma_variable],axis=1)
# pred_all_classes = tf.concat([pred_initial_classes, beta_variable * pred_new_classes],axis=1)
predictions = {
'classes': tf.argmax(pred_all_classes, axis=1),
'probabilities': tf.nn.softmax(pred_all_classes, name='softmax_tensor'),
}
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.losses.softmax_cross_entropy(
logits=pred_all_classes, onehot_labels=label_all_classes)
if itera > 0 and not flag_bias:
T = 2
dis_logits_soft = tf.nn.softmax(distill_pred_initial_classes/T, name='dis_logits_softmax')
loss_distill = tf.losses.softmax_cross_entropy(logits=pred_initial_classes/T, onehot_labels=dis_logits_soft)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
# If no loss_filter_fn is passed, assume we want the default behavior,
# which is that batch_normalization variables are excluded from loss.
if not loss_filter_fn:
def loss_filter_fn(name):
return 'batch_normalization' not in name
# Add weight decay to the loss.
if itera == 0:
loss = cross_entropy + weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in variables_graph
if loss_filter_fn(v.name)])
elif not flag_bias:
print ("enter training with distilling")
lambda_ = 1.0 * itera / (itera+1)
loss = lambda_ * loss_distill + (1 - lambda_) * cross_entropy + weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in variables_graph
if loss_filter_fn(v.name)])
else:
assert(flag_bias == True)
## apply L2 regularization to gamma, leave beta unconstrained
gamma_l2_loss = tf.nn.l2_loss(gamma_variable)
loss = cross_entropy + gamma_l2_loss * 0.1
if mode == tf.estimator.ModeKeys.TRAIN:
if flag_bias:
tf.train.init_from_checkpoint(restore_model_dir, {'resnet/' : 'resnet/'})
elif itera > 0:
# restore from previous model
tf.train.init_from_checkpoint(restore_model_dir, {'resnet/' : 'resnet/'})
tf.train.init_from_checkpoint(restore_model_dir, {'resnet/' : 'store_resnet/'})
global_step = tf.train.get_or_create_global_step()
learning_rate = learning_rate_fn(global_step)
# Create a tensor named learning_rate for logging purposes
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=momentum)
# Batch norm requires update ops to be added as a dependency to train_op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
if flag_bias:
train_op = optimizer.minimize(loss, global_step, var_list=variables_bias)
else:
train_op = optimizer.minimize(loss, global_step, var_list=variables_graph)
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(label_all_classes, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
def resnet_main(flags, model_function, input_function, x_train, y_train, x_val, y_val, x_test, y_test, itera, nb_groups, beta, gamma):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
model_dir_current_itera = os.path.join(flags.model_dir, str(itera))
if itera == 0:
model_dir_previous_iter = os.path.join(flags.model_dir, str(itera))
else:
model_dir_previous_iter = os.path.join(flags.model_dir, str(itera - 1))
num_train_images = len(x_train)
# Set up a RunConfig to only save checkpoints once per training cycle.
model_dir_current_itera_classifier = model_dir_current_itera + '_classifier'
model_dir_current_itera_bias = model_dir_current_itera + '_bias'
model_dir_previous_iter_itera_classifier = model_dir_previous_iter + '_classifier'
run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
classifier = tf.estimator.Estimator(
model_fn=model_function, model_dir=model_dir_current_itera_classifier, config=run_config,
params={
'resnet_size': flags.resnet_size,
'data_format': flags.data_format,
'batch_size': flags.batch_size,
'itera': itera,
'nb_groups': nb_groups,
'restore_model_dir': model_dir_previous_iter_itera_classifier,
'num_train_images': num_train_images,
'flag_bias': False
})
for _ in range(flags.train_epochs // flags.epochs_per_eval):
tensors_to_log = {
'learning_rate': 'learning_rate',
'cross_entropy': 'cross_entropy',
'train_accuracy': 'train_accuracy'
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=100)
print('Starting a training cycle.')
def input_fn_train():
return input_function(True, x_train, y_train, flags.batch_size,
flags.epochs_per_eval, flags.num_parallel_calls)
## This condition is applied when your training is interepted by unexpected power outage,
## which happens in my lab sometimes and you would like to resume the training
# if itera > 6:
if itera > -1:
classifier.train(input_fn=input_fn_train, hooks=[logging_hook])
if itera > 0:
print('Starting bias optimization on validation.')
epoch_val_times = _BIAS_EPOCHS
def input_fn_eval():
return input_function(False, x_val, y_val, flags.batch_size,
flags.epochs_per_eval*epoch_val_times, flags.num_parallel_calls)
num_val_images = len(x_val)
print (num_val_images)
run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
# bias correction optimization using validation set
model_dir_current_itera_bias = model_dir_current_itera + '_bias'
classifier_bias = tf.estimator.Estimator(
model_fn=model_function, model_dir=model_dir_current_itera_bias, config=run_config,
params={
'resnet_size': flags.resnet_size,
'data_format': flags.data_format,
'batch_size': flags.batch_size,
'itera': itera,
'nb_groups': nb_groups,
'restore_model_dir': model_dir_current_itera_classifier,
'num_train_images': num_val_images,
'flag_bias': True
})
## This condition is applied when your training is interepted by unexpected power outage,
## which happens in my lab sometimes and you would like to resume the training
# if itera > 6:
if itera > -1:
classifier_bias.train(input_fn=input_fn_eval, hooks=[logging_hook])
## results from validation set
def input_fn_eval_test():
return input_function(False, x_val, y_val, flags.batch_size,
1, flags.num_parallel_calls)
test_eval_results = classifier.evaluate(input_fn=input_fn_eval_test)
print(test_eval_results)
## results from test set
def input_fn_test():
return input_function(False, x_test, y_test, flags.batch_size,
1, flags.num_parallel_calls)
test_eval_results = classifier.evaluate(input_fn=input_fn_test)
print(test_eval_results)
else:
# Evaluate the model on test and print results
def input_fn_test():
return input_function(False, x_test, y_test, flags.batch_size,
1, flags.num_parallel_calls)
test_eval_results = classifier.evaluate(input_fn=input_fn_test)
print(test_eval_results)
# log beta and final results
if itera == 0:
selected_beta = 1.0
selected_gamma = 0.0
else:
selected_beta = tf.train.load_variable(model_dir_current_itera_bias, 'bias_opt/beta')
selected_gamma = tf.train.load_variable(model_dir_current_itera_bias, 'bias_opt/gamma')
# selected_gamma = 0.0
print (selected_beta, selected_gamma)
test_final_accuracy = test_eval_results['accuracy']
# extract features for the training data and return to select exemplars.
def input_fn_feature_extraction():
return input_function(False, x_train, y_train, flags.batch_size,
1, flags.num_parallel_calls)
resnet_features = classifier.predict(input_fn = input_fn_feature_extraction, predict_keys=['features'])
return list(resnet_features), selected_beta, selected_gamma, test_final_accuracy
class ResnetArgParser(argparse.ArgumentParser):
"""Arguments for configuring and running a Resnet Model.
"""
def __init__(self, resnet_size_choices=None):
super(ResnetArgParser, self).__init__()
self.add_argument(
'--data_dir', type=str, default='/tmp/resnet_data',
help='The directory where the input data is stored.')
self.add_argument(
'--num_parallel_calls', type=int, default=5,
help='The number of records that are processed in parallel '
'during input processing. This can be optimized per data set but '
'for generally homogeneous data sets, should be approximately the '
'number of available CPU cores.')
self.add_argument(
'--model_dir', type=str, default='/tmp/resnet_model',
help='The directory where the model will be stored.')
self.add_argument(
'--resnet_size', type=int, default=50,
choices=resnet_size_choices,
help='The size of the ResNet model to use.')
self.add_argument(
'--train_epochs', type=int, default=100,
help='The number of epochs to use for training.')
self.add_argument(
'--epochs_per_eval', type=int, default=1,
help='The number of training epochs to run between evaluations.')
self.add_argument(
'--batch_size', type=int, default=32,
help='Batch size for training and evaluation.')
self.add_argument(
'--data_format', type=str, default=None,
choices=['channels_first', 'channels_last'],
help='A flag to override the data format used in the model. '
'channels_first provides a performance boost on GPU but '
'is not always compatible with CPU. If left unspecified, '
'the data format will be chosen automatically based on '
'whether TensorFlow was built for CPU or GPU.')