-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
237 lines (175 loc) · 8.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from __future__ import print_function, division
import sys
sys.path.append('core')
import argparse
import os
import cv2
import time
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from core.network import RAFTGMA
from core.utils import flow_viz
import datasets
import evaluate
from torch.cuda.amp import GradScaler
# exclude extremly large displacements
MAX_FLOW = 400
def convert_flow_to_image(image1, flow):
flow = flow.permute(1, 2, 0).cpu().numpy()
flow_image = flow_viz.flow_to_image(flow)
flow_image = cv2.resize(flow_image, (image1.shape[3], image1.shape[2]))
return flow_image
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def sequence_loss(flow_preds, flow_gt, valid, gamma):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(flow_preds)
flow_loss = 0.0
# exclude invalid pixels and extremely large displacements
valid = (valid >= 0.5) & ((flow_gt**2).sum(dim=1).sqrt() < MAX_FLOW)
for i in range(n_predictions):
i_weight = gamma**(n_predictions - i - 1)
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += i_weight * (valid[:, None] * i_loss).mean()
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe < 1).float().mean().item(),
'3px': (epe < 3).float().mean().item(),
'5px': (epe < 5).float().mean().item(),
}
return flow_loss, metrics
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=args.lr, total_steps=args.num_steps+100,
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
class Logger:
def __init__(self, model, scheduler, args):
self.model = model
self.args = args
self.scheduler = scheduler
self.total_steps = 0
self.running_loss_dict = {}
self.train_epe_list = []
self.train_steps_list = []
self.val_steps_list = []
self.val_results_dict = {}
def _print_training_status(self):
metrics_data = [np.mean(self.running_loss_dict[k]) for k in sorted(self.running_loss_dict.keys())]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_lr()[0])
metrics_str = ("{:10.4f}, "*len(metrics_data[:-1])).format(*metrics_data[:-1])
# Compute time left
# time_left_sec = (self.args.num_steps - (self.total_steps+1)) * metrics_data[-1]
# time_left_sec = time_left_sec.astype(np.int)
# time_left_hms = "{:02d}h{:02d}m{:02d}s".format(time_left_sec // 3600, time_left_sec % 3600 // 60, time_left_sec % 3600 % 60)
# time_left_hms = f"{time_left_hms:>12}"
# print the training status
print(training_str + metrics_str )
# logging running loss to total loss
self.train_epe_list.append(np.mean(self.running_loss_dict['epe']))
self.train_steps_list.append(self.total_steps)
for key in self.running_loss_dict:
self.running_loss_dict[key] = []
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss_dict:
self.running_loss_dict[key] = []
self.running_loss_dict[key].append(metrics[key])
if self.total_steps % self.args.print_freq == self.args.print_freq-1:
self._print_training_status()
self.running_loss_dict = {}
def main(args):
model = nn.DataParallel(RAFTGMA(args), device_ids=args.gpus)
print(f"Parameter Count: {count_parameters(model)}")
if args.restore_ckpt is not None:
model.load_state_dict(torch.load(args.restore_ckpt), strict=False)
model.cuda()
model.train()
# if args.stage != 'chairs':
# model.module.freeze_bn()
train_loader = datasets.fetch_dataloader(args)
optimizer, scheduler = fetch_optimizer(args, model)
scaler = GradScaler(enabled=args.mixed_precision)
logger = Logger(model, scheduler, args)
while logger.total_steps <= args.num_steps:
train(model, train_loader, optimizer, scheduler, logger, scaler, args)
# if logger.total_steps >= args.num_steps:
# plot_train(logger, args)
# plot_val(logger, args)
# break
PATH = args.output+f'/{args.name}.pth'
torch.save(model.state_dict(), PATH)
return PATH
def train(model, train_loader, optimizer, scheduler, logger, scaler, args):
for i_batch, data_blob in enumerate(train_loader):
tic = time.time()
image1, image2, flow, valid = [x.cuda() for x in data_blob]
optimizer.zero_grad()
flow_pred = model(image1, image2)
loss, metrics = sequence_loss(flow_pred, flow, valid, args.gamma)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
scaler.step(optimizer)
scheduler.step()
scaler.update()
toc = time.time()
metrics['time'] = toc - tic
logger.push(metrics)
# Validate
if logger.total_steps % args.val_freq == args.val_freq - 1:
# validate(model, args, logger)
# plot_train(logger, args)
# plot_val(logger, args)
PATH = args.output + f'/{logger.total_steps+1}_{args.name}.pth'
torch.save(model.state_dict(), PATH)
if logger.total_steps >= args.num_steps:
break
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='cedP', help="P")
parser.add_argument('--stage', default = 'chairs',help="determines which dataset to use for training")
#parser.add_argument('--validation',default=False, type=str, nargs='+')
parser.add_argument('--restore_ckpt', help="restore checkpoint")
parser.add_argument('--output', type=str, default='checkpoints', help='output directory to save checkpoints and plots')
parser.add_argument('--lr', type=float, default=0.00025)
parser.add_argument('--num_steps', type=int, default=450000)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--image_size', type=int, nargs='+', default=[368, 496])
parser.add_argument('--gpus', type=int, nargs='+', default=[0])
parser.add_argument('--wdecay', type=float, default=.00005)
parser.add_argument('--epsilon', type=float, default=1e-8)
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--upsample-learn', action='store_true', default=False,
help='If True, use learned upsampling, otherwise, use bilinear upsampling.')
parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting')
parser.add_argument('--iters', type=int, default=12)
parser.add_argument('--val_freq', type=int, default=5000,
help='validation frequency')
parser.add_argument('--print_freq', type=int, default=100,
help='printing frequency')
parser.add_argument('--mixed_precision', default=False, action='store_true',
help='use mixed precision')
parser.add_argument('--model_name', default='', help='specify model name')
parser.add_argument('--position_only', default=False, action='store_true',
help='only use position-wise attention')
parser.add_argument('--position_and_content', default=False, action='store_true',
help='use position and content-wise attention')
parser.add_argument('--num_heads', default=1, type=int,
help='number of heads in attention and aggregation')
args = parser.parse_args()
torch.manual_seed(1234)
np.random.seed(1234)
if not os.path.isdir(args.output):
os.makedirs(args.output)
main(args)