-
Notifications
You must be signed in to change notification settings - Fork 281
/
openset_utils.py
372 lines (342 loc) · 8.18 KB
/
openset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
import torch.nn as nn
from clip import clip
def article(name):
return "an" if name[0] in "aeiou" else "a"
def processed_name(name, rm_dot=False):
# _ for lvis
# / for obj365
res = name.replace("_", " ").replace("/", " or ").lower()
if rm_dot:
res = res.rstrip(".")
return res
single_template = ["a photo of a {}."]
multiple_templates = [
"There is {article} {} in the scene.",
"There is the {} in the scene.",
"a photo of {article} {} in the scene.",
"a photo of the {} in the scene.",
"a photo of one {} in the scene.",
"itap of {article} {}.",
"itap of my {}.", # itap: I took a picture of
"itap of the {}.",
"a photo of {article} {}.",
"a photo of my {}.",
"a photo of the {}.",
"a photo of one {}.",
"a photo of many {}.",
"a good photo of {article} {}.",
"a good photo of the {}.",
"a bad photo of {article} {}.",
"a bad photo of the {}.",
"a photo of a nice {}.",
"a photo of the nice {}.",
"a photo of a cool {}.",
"a photo of the cool {}.",
"a photo of a weird {}.",
"a photo of the weird {}.",
"a photo of a small {}.",
"a photo of the small {}.",
"a photo of a large {}.",
"a photo of the large {}.",
"a photo of a clean {}.",
"a photo of the clean {}.",
"a photo of a dirty {}.",
"a photo of the dirty {}.",
"a bright photo of {article} {}.",
"a bright photo of the {}.",
"a dark photo of {article} {}.",
"a dark photo of the {}.",
"a photo of a hard to see {}.",
"a photo of the hard to see {}.",
"a low resolution photo of {article} {}.",
"a low resolution photo of the {}.",
"a cropped photo of {article} {}.",
"a cropped photo of the {}.",
"a close-up photo of {article} {}.",
"a close-up photo of the {}.",
"a jpeg corrupted photo of {article} {}.",
"a jpeg corrupted photo of the {}.",
"a blurry photo of {article} {}.",
"a blurry photo of the {}.",
"a pixelated photo of {article} {}.",
"a pixelated photo of the {}.",
"a black and white photo of the {}.",
"a black and white photo of {article} {}.",
"a plastic {}.",
"the plastic {}.",
"a toy {}.",
"the toy {}.",
"a plushie {}.",
"the plushie {}.",
"a cartoon {}.",
"the cartoon {}.",
"an embroidered {}.",
"the embroidered {}.",
"a painting of the {}.",
"a painting of a {}.",
]
openimages_rare_unseen = ['Aerial photography',
'Aircraft engine',
'Ale',
'Aloe',
'Amphibian',
'Angling',
'Anole',
'Antique car',
'Arcade game',
'Arthropod',
'Assault rifle',
'Athletic shoe',
'Auto racing',
'Backlighting',
'Bagpipes',
'Ball game',
'Barbecue chicken',
'Barechested',
'Barquentine',
'Beef tenderloin',
'Billiard room',
'Billiards',
'Bird of prey',
'Black swan',
'Black-and-white',
'Blond',
'Boating',
'Bonbon',
'Bottled water',
'Bouldering',
'Bovine',
'Bratwurst',
'Breadboard',
'Briefs',
'Brisket',
'Brochette',
'Calabaza',
'Camera operator',
'Canola',
'Childbirth',
'Chordophone',
'Church bell',
'Classical sculpture',
'Close-up',
'Cobblestone',
'Coca-cola',
'Combat sport',
'Comics',
'Compact car',
'Computer speaker',
'Cookies and crackers',
'Coral reef fish',
'Corn on the cob',
'Cosmetics',
'Crocodilia',
'Digital camera',
'Dishware',
'Divemaster',
'Dobermann',
'Dog walking',
'Domestic rabbit',
'Domestic short-haired cat',
'Double-decker bus',
'Drums',
'Electric guitar',
'Electric piano',
'Electronic instrument',
'Equestrianism',
'Equitation',
'Erinaceidae',
'Extreme sport',
'Falafel',
'Figure skating',
'Filling station',
'Fire apparatus',
'Firearm',
'Flatbread',
'Floristry',
'Forklift truck',
'Freight transport',
'Fried food',
'Fried noodles',
'Frigate',
'Frozen yogurt',
'Frying',
'Full moon',
'Galleon',
'Glacial landform',
'Gliding',
'Go-kart',
'Goats',
'Grappling',
'Great white shark',
'Gumbo',
'Gun turret',
'Hair coloring',
'Halter',
'Headphones',
'Heavy cruiser',
'Herding',
'High-speed rail',
'Holding hands',
'Horse and buggy',
'Horse racing',
'Hound',
'Hunting knife',
'Hurdling',
'Inflatable',
'Jackfruit',
'Jeans',
'Jiaozi',
'Junk food',
'Khinkali',
'Kitesurfing',
'Lawn game',
'Leaf vegetable',
'Lechon',
'Lifebuoy',
'Locust',
'Lumpia',
'Luxury vehicle',
'Machine tool',
'Medical imaging',
'Melee weapon',
'Microcontroller',
'Middle ages',
'Military person',
'Military vehicle',
'Milky way',
'Miniature Poodle',
'Modern dance',
'Molluscs',
'Monoplane',
'Motorcycling',
'Musical theatre',
'Narcissus',
'Nest box',
'Newsagent\'s shop',
'Nile crocodile',
'Nordic skiing',
'Nuclear power plant',
'Orator',
'Outdoor shoe',
'Parachuting',
'Pasta salad',
'Peafowl',
'Pelmeni',
'Perching bird',
'Performance car',
'Personal water craft',
'Pit bull',
'Plant stem',
'Pork chop',
'Portrait photography',
'Primate',
'Procyonidae',
'Prosciutto',
'Public speaking',
'Racewalking',
'Ramen',
'Rear-view mirror',
'Residential area',
'Ribs',
'Rice ball',
'Road cycling',
'Roller skating',
'Roman temple',
'Rowing',
'Rural area',
'Sailboat racing',
'Scaled reptile',
'Scuba diving',
'Senior citizen',
'Shallot',
'Shinto shrine',
'Shooting range',
'Siberian husky',
'Sledding',
'Soba',
'Solar energy',
'Sport climbing',
'Sport utility vehicle',
'Steamed rice',
'Stemware',
'Sumo',
'Surfing Equipment',
'Team sport',
'Touring car',
'Toy block',
'Trampolining',
'Underwater diving',
'Vegetarian food',
'Wallaby',
'Water polo',
'Watercolor paint',
'Whiskers',
'Wind wave',
'Woodwind instrument',
'Yakitori',
'Zeppelin']
def build_openset_label_embedding(categories=None):
if categories is None:
categories = openimages_rare_unseen
print("Creating pretrained CLIP model")
model, _ = clip.load("ViT-B/16")
templates = multiple_templates
run_on_gpu = torch.cuda.is_available()
with torch.no_grad():
openset_label_embedding = []
for category in categories:
texts = [
template.format(
processed_name(category, rm_dot=True), article=article(category)
)
for template in templates
]
texts = [
"This is " + text if text.startswith("a") or text.startswith("the") else text
for text in texts
]
texts = clip.tokenize(texts) # tokenize
if run_on_gpu:
texts = texts.cuda()
model = model.cuda()
text_embeddings = model.encode_text(texts)
text_embeddings /= text_embeddings.norm(dim=-1, keepdim=True)
text_embedding = text_embeddings.mean(dim=0)
text_embedding /= text_embedding.norm()
openset_label_embedding.append(text_embedding)
openset_label_embedding = torch.stack(openset_label_embedding, dim=1)
if run_on_gpu:
openset_label_embedding = openset_label_embedding.cuda()
openset_label_embedding = openset_label_embedding.t()
return openset_label_embedding, categories
import json
from tqdm import tqdm
def build_openset_llm_label_embedding(llm_tag_des):
print("Creating pretrained CLIP model")
model, _ = clip.load("ViT-B/16")
llm_tag_des = llm_tag_des
categories = []
run_on_gpu = torch.cuda.is_available()
with torch.no_grad():
openset_label_embedding = []
for item in tqdm(llm_tag_des):
category = list(item.keys())[0]
des = list(item.values())[0]
categories.append(category)
texts = clip.tokenize(des, truncate=True) # tokenize
if run_on_gpu:
texts = texts.cuda()
model = model.cuda()
text_embeddings = model.encode_text(texts)
text_embeddings /= text_embeddings.norm(dim=-1, keepdim=True)
# text_embedding = text_embeddings.mean(dim=0)
# text_embedding /= text_embedding.norm()
# openset_label_embedding.append(text_embedding)
openset_label_embedding.append(text_embeddings)
# openset_label_embedding = torch.stack(openset_label_embedding, dim=1)
openset_label_embedding = torch.cat(openset_label_embedding, dim=0)
if run_on_gpu:
openset_label_embedding = openset_label_embedding.cuda()
# openset_label_embedding = openset_label_embedding.t()
return openset_label_embedding, categories