-
Notifications
You must be signed in to change notification settings - Fork 192
/
demo.py
124 lines (109 loc) · 3.88 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# /usr/bin/python3
import cv2
import numpy as np
import sys
import tensorflow as tf
from model import predict, image_to_tensor, deepnn
CASC_PATH = './data/haarcascade_files/haarcascade_frontalface_default.xml'
cascade_classifier = cv2.CascadeClassifier(CASC_PATH)
EMOTIONS = ['angry', 'disgusted', 'fearful', 'happy', 'sad', 'surprised', 'neutral']
def format_image(image):
if len(image.shape) > 2 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = cascade_classifier.detectMultiScale(
image,
scaleFactor = 1.3,
minNeighbors = 5
)
# None is no face found in image
if not len(faces) > 0:
return None, None
max_are_face = faces[0]
for face in faces:
if face[2] * face[3] > max_are_face[2] * max_are_face[3]:
max_are_face = face
# face to image
face_coor = max_are_face
image = image[face_coor[1]:(face_coor[1] + face_coor[2]), face_coor[0]:(face_coor[0] + face_coor[3])]
# Resize image to network size
try:
image = cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC)
except Exception:
print("[+} Problem during resize")
return None, None
return image, face_coor
def face_dect(image):
"""
Detecting faces in image
:param image:
:return: the coordinate of max face
"""
if len(image.shape) > 2 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = cascade_classifier.detectMultiScale(
image,
scaleFactor = 1.3,
minNeighbors = 5
)
if not len(faces) > 0:
return None
max_face = faces[0]
for face in faces:
if face[2] * face[3] > max_face[2] * max_face[3]:
max_face = face
face_image = image[max_face[1]:(max_face[1] + max_face[2]), max_face[0]:(max_face[0] + max_face[3])]
try:
image = cv2.resize(face_image, (48, 48), interpolation=cv2.INTER_CUBIC) / 255.
except Exception:
print("[+} Problem during resize")
return None
return face_image
def resize_image(image, size):
try:
image = cv2.resize(image, size, interpolation=cv2.INTER_CUBIC) / 255.
except Exception:
print("+} Problem during resize")
return None
return image
def draw_emotion():
pass
def demo(modelPath, showBox=False):
face_x = tf.placeholder(tf.float32, [None, 2304])
y_conv = deepnn(face_x)
probs = tf.nn.softmax(y_conv)
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(modelPath)
sess = tf.Session()
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('Restore model sucsses!!\nNOTE: Press SPACE on keyboard to capture face.')
feelings_faces = []
for index, emotion in enumerate(EMOTIONS):
feelings_faces.append(cv2.imread('./data/emojis/' + emotion + '.png', -1))
video_captor = cv2.VideoCapture(0)
emoji_face = []
result = None
while True:
ret, frame = video_captor.read()
detected_face, face_coor = format_image(frame)
if showBox:
if face_coor is not None:
[x,y,w,h] = face_coor
cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 2)
if cv2.waitKey(1) & 0xFF == ord(' '):
if detected_face is not None:
cv2.imwrite('a.jpg', detected_face)
tensor = image_to_tensor(detected_face)
result = sess.run(probs, feed_dict={face_x: tensor})
# print(result)
if result is not None:
for index, emotion in enumerate(EMOTIONS):
cv2.putText(frame, emotion, (10, index * 20 + 20), cv2.FONT_HERSHEY_PLAIN, 0.5, (0, 255, 0), 1)
cv2.rectangle(frame, (130, index * 20 + 10), (130 + int(result[0][index] * 100), (index + 1) * 20 + 4),
(255, 0, 0), -1)
emoji_face = feelings_faces[np.argmax(result[0])]
for c in range(0, 3):
frame[200:320, 10:130, c] = emoji_face[:, :, c] * (emoji_face[:, :, 3] / 255.0) + frame[200:320, 10:130, c] * (1.0 - emoji_face[:, :, 3] / 255.0)
cv2.imshow('face', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break