输入某二叉树的前序遍历和中序遍历的结果,请构建该二叉树并返回其根节点。
假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
示例 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7] Output: [3,9,20,null,null,15,7]
示例 2:
Input: preorder = [-1], inorder = [-1] Output: [-1]
限制:
0 <= 节点个数 <= 5000
注意:本题与主站 105 题重复:https://leetcode.cn/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
方法一:哈希表 + 递归
由于我们每一次都需要在中序序列中找到根节点的位置,因此我们可以使用哈希表
接下来,我们设计一个递归函数
函数
如果
否则,我们取前序序列的第 root = new TreeNode(preorder[i])
,然后我们在中序序列中找到根节点的位置,记为 root
。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
def dfs(i, j, n):
if n < 1:
return None
root = TreeNode(preorder[i])
k = d[preorder[i]]
l = k - j
root.left = dfs(i + 1, j, l)
root.right = dfs(i + 1 + l, k + 1, n - l - 1)
return root
d = {v: i for i, v in enumerate(inorder)}
return dfs(0, 0, len(preorder))
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private Map<Integer, Integer> d = new HashMap<>();
private int[] preorder;
private int[] inorder;
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = inorder.length;
for (int i = 0; i < n; ++i) {
d.put(inorder[i], i);
}
this.preorder = preorder;
this.inorder = inorder;
return dfs(0, 0, n);
}
private TreeNode dfs(int i, int j, int n) {
if (n < 1) {
return null;
}
int k = d.get(preorder[i]);
int l = k - j;
TreeNode root = new TreeNode(preorder[i]);
root.left = dfs(i + 1, j, l);
root.right = dfs(i + 1 + l, k + 1, n - l - 1);
return root;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
unordered_map<int, int> d;
int n = inorder.size();
for (int i = 0; i < n; ++i) {
d[inorder[i]] = i;
}
function<TreeNode*(int, int, int)> dfs = [&](int i, int j, int n) -> TreeNode* {
if (n < 1) {
return nullptr;
}
int k = d[preorder[i]];
int l = k - j;
TreeNode* root = new TreeNode(preorder[i]);
root->left = dfs(i + 1, j, l);
root->right = dfs(i + 1 + l, k + 1, n - l - 1);
return root;
};
return dfs(0, 0, n);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(preorder []int, inorder []int) *TreeNode {
d := map[int]int{}
for i, v := range inorder {
d[v] = i
}
var dfs func(i, j, n int) *TreeNode
dfs = func(i, j, n int) *TreeNode {
if n < 1 {
return nil
}
k := d[preorder[i]]
l := k - j
root := &TreeNode{Val: preorder[i]}
root.Left = dfs(i+1, j, l)
root.Right = dfs(i+1+l, k+1, n-l-1)
return root
}
return dfs(0, 0, len(inorder))
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {number[]} preorder
* @param {number[]} inorder
* @return {TreeNode}
*/
var buildTree = function (preorder, inorder) {
const d = new Map();
const n = inorder.length;
for (let i = 0; i < n; ++i) {
d.set(inorder[i], i);
}
const dfs = (i, j, n) => {
if (n < 1) {
return null;
}
const k = d.get(preorder[i]);
const l = k - j;
const root = new TreeNode(preorder[i]);
root.left = dfs(i + 1, j, l);
root.right = dfs(i + 1 + l, k + 1, n - l - 1);
return root;
};
return dfs(0, 0, n);
};
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
const d = new Map<number, number>();
const n = inorder.length;
for (let i = 0; i < n; ++i) {
d.set(inorder[i], i);
}
const dfs = (i: number, j: number, n: number): TreeNode | null => {
if (n < 1) {
return null;
}
const k = d.get(preorder[i]) ?? 0;
const l = k - j;
const root = new TreeNode(preorder[i]);
root.left = dfs(i + 1, j, l);
root.right = dfs(i + 1 + l, k + 1, n - l - 1);
return root;
};
return dfs(0, 0, n);
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
if (inorder.length === 0) {
return null;
}
const val = preorder[0];
const i = inorder.indexOf(val);
return new TreeNode(
val,
buildTree(preorder.slice(1, i + 1), inorder.slice(0, i)),
buildTree(preorder.slice(i + 1), inorder.slice(i + 1)),
);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
fn help(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {
if inorder.is_empty() {
return None;
}
let val = preorder[0];
let i = inorder.iter().position(|num| *num == val).unwrap();
Some(Rc::new(RefCell::new(TreeNode {
val,
left: Self::help(&preorder[1..i + 1], &inorder[..i]),
right: Self::help(&preorder[i + 1..], &inorder[i + 1..]),
})))
}
pub fn build_tree(preorder: Vec<i32>, inorder: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
Self::help(&preorder, &inorder)
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode BuildTree(int[] preorder, int[] inorder) {
if (preorder.Length == 0) {
return null;
}
TreeNode root = new TreeNode(preorder[0]);
int idx = Array.IndexOf(inorder, root.val);
root.left = BuildTree(preorder[1..(index+1)], inorder[0..idx]);
root.right = BuildTree(preorder[(index+1)..], inorder[(idx+1)..]);
return root;
}
}