Skip to content

Latest commit

 

History

History
303 lines (255 loc) · 7.14 KB

File metadata and controls

303 lines (255 loc) · 7.14 KB

题目描述

请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。

例如,二叉树 [1,2,2,3,4,4,3] 是对称的。

    1
   / \
  2   2
 / \ / \
3  4 4  3

但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:

    1
   / \
  2   2
   \   \
   3    3

 

示例 1:

输入:root = [1,2,2,3,4,4,3]
输出:true

示例 2:

输入:root = [1,2,2,null,3,null,3]
输出:false

 

限制:

0 <= 节点个数 <= 1000

注意:本题与主站 101 题相同:https://leetcode.cn/problems/symmetric-tree/

解法

方法一:递归

我们设计一个递归函数 dfs,它接收两个参数 ab,分别代表两棵树的根节点。我们可以对 ab 进行如下判断:

  • 如果 ab 都为空,说明两棵树都遍历完了,返回 true
  • 如果 ab 中有且只有一个为空,说明两棵树的结构不同,返回 false
  • 如果 ab 的值不相等,说明两棵树的结构不同,返回 false
  • 如果 ab 的值相等,那么我们分别递归地判断 a 的左子树和 b 的右子树,以及 a 的右子树和 b 的左子树是否对称。

最后,我们返回 dfs(root, root),即判断 root 的左子树和右子树是否对称。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None


class Solution:
    def isSymmetric(self, root: TreeNode) -> bool:
        def dfs(a, b):
            if a is None and b is None:
                return True
            if a is None or b is None or a.val != b.val:
                return False
            return dfs(a.left, b.right) and dfs(a.right, b.left)

        return dfs(root, root)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isSymmetric(TreeNode root) {
        return dfs(root, root);
    }

    private boolean dfs(TreeNode a, TreeNode b) {
        if (a == null && b == null) {
            return true;
        }
        if (a == null || b == null || a.val != b.val) {
            return false;
        }
        return dfs(a.left, b.right) && dfs(a.right, b.left);
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        function<bool(TreeNode*, TreeNode*)> dfs = [&](TreeNode* a, TreeNode* b) -> bool {
            if (!a && !b) {
                return true;
            }
            if (!a || !b || a->val != b->val) {
                return false;
            }
            return dfs(a->left, b->right) && dfs(a->right, b->left);
        };
        return dfs(root, root);
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func isSymmetric(root *TreeNode) bool {
	var dfs func(a, b *TreeNode) bool
	dfs = func(a, b *TreeNode) bool {
		if a == nil && b == nil {
			return true
		}
		if a == nil || b == nil || a.Val != b.Val {
			return false
		}
		return dfs(a.Left, b.Right) && dfs(a.Right, b.Left)
	}
	return dfs(root, root)
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @return {boolean}
 */
var isSymmetric = function (root) {
    const dfs = (a, b) => {
        if (!a && !b) {
            return true;
        }
        if (!a || !b || a.val != b.val) {
            return false;
        }
        return dfs(a.left, b.right) && dfs(a.right, b.left);
    };
    return dfs(root, root);
};

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function isSymmetric(root: TreeNode | null): boolean {
    const dfs = (a: TreeNode | null, b: TreeNode | null): boolean => {
        if (!a && !b) {
            return true;
        }
        if (!a || !b || a.val != b.val) {
            return false;
        }
        return dfs(a.left, b.right) && dfs(a.right, b.left);
    };
    return dfs(root, root);
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
    fn dfs(a: &Option<Rc<RefCell<TreeNode>>>, b: &Option<Rc<RefCell<TreeNode>>>) -> bool {
        if a.is_none() && b.is_none() {
            return true;
        }
        if a.is_none() || b.is_none() {
            return false;
        }
        let l = a.as_ref().unwrap().borrow();
        let r = b.as_ref().unwrap().borrow();
        l.val == r.val && Self::dfs(&l.left, &r.right) && Self::dfs(&l.right, &r.left)
    }

    pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
        Self::dfs(&root, &root)
    }
}

C#

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public bool IsSymmetric(TreeNode root) {
        return dfs(root, root);
    }

    private bool dfs(TreeNode a, TreeNode b) {
        if (a == null && b == null) {
            return true;
        }
        if (a == null || b == null || a.val != b.val) {
            return false;
        }
        return dfs(a.left, b.right) && dfs(a.right, b.left);
    }
}

...