输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
注意:本题与主站 53 题相同:https://leetcode.cn/problems/maximum-subarray/
方法一:动态规划
我们定义
那么我们如何求
或者可以写成这样:
我们可以不用开一个数组来存储所有的计算结果,而是只用两个变量
时间复杂度
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
ans, f = -inf, 0
for x in nums:
f = max(f, 0) + x
ans = max(ans, f)
return ans
class Solution {
public int maxSubArray(int[] nums) {
int ans = Integer.MIN_VALUE;
int f = 0;
for (int x : nums) {
f = Math.max(f, 0) + x;
ans = Math.max(ans, f);
}
return ans;
}
}
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int ans = INT_MIN;
int f = 0;
for (int& x : nums) {
f = max(f, 0) + x;
ans = max(ans, f);
}
return ans;
}
};
func maxSubArray(nums []int) int {
ans, f := -1000000000, 0
for _, x := range nums {
f = max(f, 0) + x
ans = max(ans, f)
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function (nums) {
let ans = -1e10;
let f = 0;
for (const x of nums) {
f = Math.max(f, 0) + x;
ans = Math.max(ans, f);
}
return ans;
};
function maxSubArray(nums: number[]): number {
let res = nums[0];
for (let i = 1; i < nums.length; i++) {
nums[i] = Math.max(nums[i], nums[i - 1] + nums[i]);
res = Math.max(res, nums[i]);
}
return res;
}
impl Solution {
pub fn max_sub_array(mut nums: Vec<i32>) -> i32 {
let mut res = nums[0];
for i in 1..nums.len() {
nums[i] = nums[i].max(nums[i - 1] + nums[i]);
res = res.max(nums[i]);
}
res
}
}
public class Solution {
public int MaxSubArray(int[] nums) {
int ans = -1000000000;
int f = 0;
foreach (int x in nums) {
f = Math.Max(f, 0) + x;
ans = Math.Max(ans, f);
}
return ans;
}
}