数字以0123456789101112131415…的格式序列化到一个字符序列中。在这个序列中,第5位(从下标0开始计数)是5,第13位是1,第19位是4,等等。
请写一个函数,求任意第n位对应的数字。
示例 1:
输入:n = 3 输出:3
示例 2:
输入:n = 11 输出:0
限制:
0 <= n < 2^31
注意:本题与主站 400 题相同:https://leetcode.cn/problems/nth-digit/
方法一:数学
位数为
我们用
每次将
具体做法是,首先计算出
时间复杂度
class Solution:
def findNthDigit(self, n: int) -> int:
k, cnt = 1, 9
while k * cnt < n:
n -= k * cnt
k += 1
cnt *= 10
num = 10 ** (k - 1) + (n - 1) // k
idx = (n - 1) % k
return int(str(num)[idx])
class Solution:
def findNthDigit(self, n: int) -> int:
if n < 10:
return n
n -= 10
k, p = 2, 10
while n >= 9 * k * p:
n -= 9 * k * p
k += 1
p *= 10
x = p + n // k
return int(str(x)[n % k])
class Solution {
public int findNthDigit(int n) {
int k = 1, cnt = 9;
while ((long) k * cnt < n) {
n -= k * cnt;
++k;
cnt *= 10;
}
int num = (int) Math.pow(10, k - 1) + (n - 1) / k;
int idx = (n - 1) % k;
return String.valueOf(num).charAt(idx) - '0';
}
}
class Solution {
public int findNthDigit(int n) {
if (n < 10) {
return n;
}
n -= 10;
int k = 2, p = 10;
while (n >= (long) 9 * k * p) {
n -= 9 * k * p;
++k;
p *= 10;
}
int x = p + n / k;
return String.valueOf(x).charAt(n % k) - '0';
}
}
class Solution {
public:
int findNthDigit(int n) {
int k = 1, cnt = 9;
while (1ll * k * cnt < n) {
n -= k * cnt;
++k;
cnt *= 10;
}
int num = pow(10, k - 1) + (n - 1) / k;
int idx = (n - 1) % k;
return to_string(num)[idx] - '0';
}
};
class Solution {
public:
int findNthDigit(int n) {
if (n < 10) {
return n;
}
n -= 10;
int k = 2, p = 10;
while (n >= 9ll * k * p) {
n -= 9 * k * p;
++k;
p *= 10;
}
int x = p + n / k;
return to_string(x)[n % k] - '0';
}
};
func findNthDigit(n int) int {
k, cnt := 1, 9
for k*cnt < n {
n -= k * cnt
k++
cnt *= 10
}
num := int(math.Pow10(k-1)) + (n-1)/k
idx := (n - 1) % k
return int(strconv.Itoa(num)[idx] - '0')
}
func findNthDigit(n int) int {
if n < 10 {
return n
}
n -= 10
k, p := 2, 10
for n >= 9*k*p {
n -= 9 * k * p
k++
p *= 10
}
x := p + n/k
return int(strconv.Itoa(x)[n%k] - '0')
}
/**
* @param {number} n
* @return {number}
*/
var findNthDigit = function (n) {
let k = 1,
cnt = 9;
while (k * cnt < n) {
n -= k * cnt;
++k;
cnt *= 10;
}
const num = Math.pow(10, k - 1) + (n - 1) / k;
const idx = (n - 1) % k;
return num.toString()[idx];
};
public class Solution {
public int FindNthDigit(int n) {
int k = 1, cnt = 9;
while ((long) k * cnt < n) {
n -= k * cnt;
++k;
cnt *= 10;
}
int num = (int) Math.Pow(10, k - 1) + (n - 1) / k;
int idx = (n - 1) % k;
return num.ToString()[idx] - '0';
}
}