给你一个由 '1'
(陆地)和 '0'
(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] 输出:1
示例 2:
输入:grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] 输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
的值为'0'
或'1'
方法一:Flood fill 算法
Flood fill 算法是从一个区域中提取若干个连通的点与其他相邻区域区分开(或分别染成不同颜色)的经典算法。因为其思路类似洪水从一个区域扩散到所有能到达的区域而得名。
最简单的实现方法是采用 DFS 的递归方法,也可以采用 BFS 的迭代来实现。
时间复杂度
方法二:并查集
并查集是一种树形的数据结构,顾名思义,它用于处理一些不交集的合并及查询问题。 它支持两种操作:
- 查找(Find):确定某个元素处于哪个子集,单次操作时间复杂度
$O(\alpha(n))$ - 合并(Union):将两个子集合并成一个集合,单次操作时间复杂度
$O(\alpha(n))$
其中
以下是并查集的常用模板,需要熟练掌握。其中:
-
n
表示节点数 -
p
存储每个点的父节点,初始时每个点的父节点都是自己 -
size
只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量 -
find(x)
函数用于查找$x$ 所在集合的祖宗节点 -
union(a, b)
函数用于合并$a$ 和$b$ 所在的集合
p = list(range(n))
size = [1] * n
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
def union(a, b):
pa, pb = find(a), find(b)
if pa == pb:
return
p[pa] = pb
size[pb] += size[pa]
时间复杂度
DFS - Flood Fill 算法:
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
def dfs(i, j):
grid[i][j] = '0'
for a, b in pairwise(dirs):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and grid[x][y] == '1':
dfs(x, y)
ans = 0
dirs = (-1, 0, 1, 0, -1)
m, n = len(grid), len(grid[0])
for i in range(m):
for j in range(n):
if grid[i][j] == '1':
dfs(i, j)
ans += 1
return ans
BFS - Flood Fill 算法:
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
def bfs(i, j):
grid[i][j] = '0'
q = deque([(i, j)])
while q:
i, j = q.popleft()
for a, b in pairwise(dirs):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and grid[x][y] == '1':
q.append((x, y))
grid[x][y] = 0
ans = 0
dirs = (-1, 0, 1, 0, -1)
m, n = len(grid), len(grid[0])
for i in range(m):
for j in range(n):
if grid[i][j] == '1':
bfs(i, j)
ans += 1
return ans
并查集:
class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
dirs = (0, 1, 0)
m, n = len(grid), len(grid[0])
p = list(range(m * n))
for i in range(m):
for j in range(n):
if grid[i][j] == '1':
for a, b in pairwise(dirs):
x, y = i + a, j + b
if x < m and y < n and grid[x][y] == '1':
p[find(i * n + j)] = find(x * n + y)
return sum(
grid[i][j] == '1' and i * n + j == find(i * n + j)
for i in range(m)
for j in range(n)
)
DFS - Flood Fill 算法:
class Solution {
private char[][] grid;
private int m;
private int n;
public int numIslands(char[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
dfs(i, j);
++ans;
}
}
}
return ans;
}
private void dfs(int i, int j) {
grid[i][j] = '0';
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1') {
dfs(x, y);
}
}
}
}
BFS - Flood Fill 算法:
class Solution {
private char[][] grid;
private int m;
private int n;
public int numIslands(char[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
bfs(i, j);
++ans;
}
}
}
return ans;
}
private void bfs(int i, int j) {
grid[i][j] = '0';
Deque<int[]> q = new ArrayDeque<>();
q.offer(new int[] {i, j});
int[] dirs = {-1, 0, 1, 0, -1};
while (!q.isEmpty()) {
int[] p = q.poll();
for (int k = 0; k < 4; ++k) {
int x = p[0] + dirs[k];
int y = p[1] + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1') {
q.offer(new int[] {x, y});
grid[x][y] = '0';
}
}
}
}
}
并查集:
class Solution {
private int[] p;
public int numIslands(char[][] grid) {
int m = grid.length;
int n = grid[0].length;
p = new int[m * n];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
int[] dirs = {1, 0, 1};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
for (int k = 0; k < 2; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x < m && y < n && grid[x][y] == '1') {
p[find(x * n + y)] = find(i * n + j);
}
}
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1' && i * n + j == find(i * n + j)) {
++ans;
}
}
}
return ans;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
DFS - Flood Fill 算法:
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid.size();
int n = grid[0].size();
int ans = 0;
int dirs[5] = {-1, 0, 1, 0, -1};
function<void(int, int)> dfs = [&](int i, int j) {
grid[i][j] = '0';
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == '1') {
dfs(x, y);
}
}
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
dfs(i, j);
++ans;
}
}
}
return ans;
}
};
BFS - Flood Fill 算法:
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid.size();
int n = grid[0].size();
int ans = 0;
int dirs[5] = {-1, 0, 1, 0, -1};
function<void(int, int)> bfs = [&](int i, int j) {
grid[i][j] = '0';
queue<pair<int, int>> q;
q.push({i, j});
vector<int> dirs = {-1, 0, 1, 0, -1};
while (!q.empty()) {
auto [a, b] = q.front();
q.pop();
for (int k = 0; k < 4; ++k) {
int x = a + dirs[k];
int y = b + dirs[k + 1];
if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == '1') {
q.push({x, y});
grid[x][y] = '0';
}
}
}
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
bfs(i, j);
++ans;
}
}
}
return ans;
}
};
并查集:
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<int> p(m * n);
iota(p.begin(), p.end(), 0);
function<int(int)> find = [&](int x) -> int {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
};
int dirs[3] = {1, 0, 1};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
for (int k = 0; k < 2; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x < m && y < n && grid[x][y] == '1') {
p[find(x * n + y)] = find(i * n + j);
}
}
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans += grid[i][j] == '1' && i * n + j == find(i * n + j);
}
}
return ans;
}
};
DFS - Flood Fill 算法:
func numIslands(grid [][]byte) int {
m, n := len(grid), len(grid[0])
var dfs func(i, j int)
dfs = func(i, j int) {
grid[i][j] = '0'
dirs := []int{-1, 0, 1, 0, -1}
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1' {
dfs(x, y)
}
}
}
ans := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' {
dfs(i, j)
ans++
}
}
}
return ans
}
BFS - Flood Fill 算法:
func numIslands(grid [][]byte) int {
m, n := len(grid), len(grid[0])
bfs := func(i, j int) {
grid[i][j] = '0'
q := [][]int{[]int{i, j}}
dirs := []int{-1, 0, 1, 0, -1}
for len(q) > 0 {
p := q[0]
q = q[1:]
for k := 0; k < 4; k++ {
x, y := p[0]+dirs[k], p[1]+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1' {
q = append(q, []int{x, y})
grid[x][y] = '0'
}
}
}
}
ans := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' {
bfs(i, j)
ans++
}
}
}
return ans
}
并查集:
func numIslands(grid [][]byte) int {
m, n := len(grid), len(grid[0])
p := make([]int, m*n)
for i := range p {
p[i] = i
}
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
dirs := []int{1, 0, 1}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' {
for k := 0; k < 2; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x < m && y < n && grid[x][y] == '1' {
p[find(x*n+y)] = find(i*n + j)
}
}
}
}
}
ans := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' && i*n+j == find(i*n+j) {
ans++
}
}
}
return ans
}
DFS - Flood Fill 算法:
function numIslands(grid: string[][]): number {
const m = grid.length;
const n = grid[0].length;
let ans = 0;
function dfs(i, j) {
grid[i][j] = '0';
const dirs = [-1, 0, 1, 0, -1];
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1') {
dfs(x, y);
}
}
}
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
dfs(i, j);
++ans;
}
}
}
return ans;
}
BFS - Flood Fill 算法:
function numIslands(grid: string[][]): number {
const m = grid.length;
const n = grid[0].length;
let ans = 0;
function bfs(i, j) {
grid[i][j] = '0';
let q = [[i, j]];
const dirs = [-1, 0, 1, 0, -1];
while (q.length) {
[i, j] = q.shift();
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1') {
q.push([x, y]);
grid[x][y] = '0';
}
}
}
}
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
bfs(i, j);
++ans;
}
}
}
return ans;
}
并查集:
function numIslands(grid: string[][]): number {
const m = grid.length;
const n = grid[0].length;
let p = [];
for (let i = 0; i < m * n; ++i) {
p.push(i);
}
function find(x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
const dirs = [1, 0, 1];
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
for (let k = 0; k < 2; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x < m && y < n && grid[x][y] == '1') {
p[find(i * n + j)] = find(x * n + y);
}
}
}
}
}
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] == '1' && i * n + j == find(i * n + j)) {
++ans;
}
}
}
return ans;
}
DFS - Flood Fill 算法:
const DIRS: [i32; 5] = [-1, 0, 1, 0, -1];
impl Solution {
pub fn num_islands(grid: Vec<Vec<char>>) -> i32 {
fn dfs(grid: &mut Vec<Vec<char>>, i: usize, j: usize) {
grid[i][j] = '0';
for k in 0..4 {
let x = i as i32 + DIRS[k];
let y = j as i32 + DIRS[k + 1];
if x >= 0
&& (x as usize) < grid.len()
&& y >= 0
&& (y as usize) < grid[0].len()
&& grid[x as usize][y as usize] == '1'
{
dfs(grid, x as usize, y as usize);
}
}
}
let mut grid = grid;
let mut ans = 0;
for i in 0..grid.len() {
for j in 0..grid[0].len() {
if grid[i][j] == '1' {
dfs(&mut grid, i, j);
ans += 1;
}
}
}
ans
}
}
BFS - Flood Fill 算法:
use std::collections::VecDeque;
const DIRS: [i32; 5] = [-1, 0, 1, 0, -1];
impl Solution {
pub fn num_islands(grid: Vec<Vec<char>>) -> i32 {
fn bfs(grid: &mut Vec<Vec<char>>, i: usize, j: usize) {
grid[i][j] = '0';
let mut queue = VecDeque::from([(i, j)]);
while !queue.is_empty() {
let (i, j) = queue.pop_front().unwrap();
for k in 0..4 {
let x = i as i32 + DIRS[k];
let y = j as i32 + DIRS[k + 1];
if x >= 0
&& (x as usize) < grid.len()
&& y >= 0
&& (y as usize) < grid[0].len()
&& grid[x as usize][y as usize] == '1'
{
grid[x as usize][y as usize] = '0';
queue.push_back((x as usize, y as usize));
}
}
}
}
let mut grid = grid;
let mut ans = 0;
for i in 0..grid.len() {
for j in 0..grid[0].len() {
if grid[i][j] == '1' {
bfs(&mut grid, i, j);
ans += 1;
}
}
}
ans
}
}
并查集:
const DIRS: [usize; 3] = [1, 0, 1];
impl Solution {
pub fn num_islands(grid: Vec<Vec<char>>) -> i32 {
let m = grid.len();
let n = grid[0].len();
let mut p: Vec<i32> = (0..(m * n) as i32).collect();
fn find(p: &mut Vec<i32>, x: usize) -> i32 {
if p[x] != x as i32 {
p[x] = find(p, p[x] as usize);
}
p[x]
}
for i in 0..m {
for j in 0..n {
if grid[i][j] == '1' {
for k in 0..2 {
let x = i + DIRS[k];
let y = j + DIRS[k + 1];
if x < m && y < n && grid[x][y] == '1' {
let f1 = find(&mut p, x * n + y);
let f2 = find(&mut p, i * n + j);
p[f1 as usize] = f2;
}
}
}
}
}
let mut ans = 0;
for i in 0..m {
for j in 0..n {
if grid[i][j] == '1' && p[i * n + j] == (i * n + j) as i32 {
ans += 1;
}
}
}
ans
}
}