给定一个二维矩阵 matrix
,以下类型的多个请求:
- 计算其子矩形范围内元素的总和,该子矩阵的 左上角 为
(row1, col1)
,右下角 为(row2, col2)
。
实现 NumMatrix
类:
NumMatrix(int[][] matrix)
给定整数矩阵matrix
进行初始化int sumRegion(int row1, int col1, int row2, int col2)
返回 左上角(row1, col1)
、右下角(row2, col2)
所描述的子矩阵的元素 总和 。
示例 1:
输入: ["NumMatrix","sumRegion","sumRegion","sumRegion"] [[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]] 输出: [null, 8, 11, 12] 解释: NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]); numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和) numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和) numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
- 最多调用
104
次sumRegion
方法
方法一:二维前缀和
我们用
那么分别以
我们在初始化方法中预处理出前缀和数组
初始化的时间复杂度为
class NumMatrix:
def __init__(self, matrix: List[List[int]]):
m, n = len(matrix), len(matrix[0])
self.s = [[0] * (n + 1) for _ in range(m + 1)]
for i, row in enumerate(matrix):
for j, v in enumerate(row):
self.s[i + 1][j + 1] = (
self.s[i][j + 1] + self.s[i + 1][j] - self.s[i][j] + v
)
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
return (
self.s[row2 + 1][col2 + 1]
- self.s[row2 + 1][col1]
- self.s[row1][col2 + 1]
+ self.s[row1][col1]
)
# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# param_1 = obj.sumRegion(row1,col1,row2,col2)
class NumMatrix {
private int[][] s;
public NumMatrix(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
s = new int[m + 1][n + 1];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
s[i + 1][j + 1] = s[i + 1][j] + s[i][j + 1] - s[i][j] + matrix[i][j];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
return s[row2 + 1][col2 + 1] - s[row2 + 1][col1] - s[row1][col2 + 1] + s[row1][col1];
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/
class NumMatrix {
public:
vector<vector<int>> s;
NumMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
s.resize(m + 1, vector<int>(n + 1));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
s[i + 1][j + 1] = s[i + 1][j] + s[i][j + 1] - s[i][j] + matrix[i][j];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return s[row2 + 1][col2 + 1] - s[row2 + 1][col1] - s[row1][col2 + 1] + s[row1][col1];
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix* obj = new NumMatrix(matrix);
* int param_1 = obj->sumRegion(row1,col1,row2,col2);
*/
/**
* Your NumMatrix object will be instantiated and called as such:
* let obj = NumMatrix::new(matrix);
* let ret_1: i32 = obj.sum_region(row1, col1, row2, col2);
*/
struct NumMatrix {
// Of size (N + 1) * (M + 1)
prefix_vec: Vec<Vec<i32>>,
n: usize,
m: usize,
is_initialized: bool,
ref_vec: Vec<Vec<i32>>,
}
/**
* `&self` means the method takes an immutable reference.
* If you need a mutable reference, change it to `&mut self` instead.
*/
impl NumMatrix {
fn new(matrix: Vec<Vec<i32>>) -> Self {
NumMatrix {
prefix_vec: vec![vec![0; matrix[0].len() + 1]; matrix.len() + 1],
n: matrix.len(),
m: matrix[0].len(),
is_initialized: false,
ref_vec: matrix,
}
}
fn sum_region(&mut self, row1: i32, col1: i32, row2: i32, col2: i32) -> i32 {
if !self.is_initialized {
self.initialize_prefix_vec();
}
// Since i32 will let `rustc` complain, just make it happy
let row1: usize = row1 as usize;
let col1: usize = col1 as usize;
let row2: usize = row2 as usize;
let col2: usize = col2 as usize;
// Return the value in O(1)
self.prefix_vec[row2 + 1][col2 + 1] - self.prefix_vec[row2 + 1][col1]
- self.prefix_vec[row1][col2 + 1] + self.prefix_vec[row1][col1]
}
fn initialize_prefix_vec(&mut self) {
// Initialize the prefix sum vector
for i in 0..self.n {
for j in 0..self.m {
self.prefix_vec[i + 1][j + 1] =
self.prefix_vec[i][j + 1] + self.prefix_vec[i + 1][j] - self.prefix_vec[i][j] + self.ref_vec[i][j];
}
}
self.is_initialized = true;
}
}
type NumMatrix struct {
s [][]int
}
func Constructor(matrix [][]int) NumMatrix {
m, n := len(matrix), len(matrix[0])
s := make([][]int, m+1)
for i := range s {
s[i] = make([]int, n+1)
}
for i, row := range matrix {
for j, v := range row {
s[i+1][j+1] = s[i+1][j] + s[i][j+1] - s[i][j] + v
}
}
return NumMatrix{s}
}
func (this *NumMatrix) SumRegion(row1 int, col1 int, row2 int, col2 int) int {
return this.s[row2+1][col2+1] - this.s[row2+1][col1] - this.s[row1][col2+1] + this.s[row1][col1]
}
/**
* Your NumMatrix object will be instantiated and called as such:
* obj := Constructor(matrix);
* param_1 := obj.SumRegion(row1,col1,row2,col2);
*/
/**
* @param {number[][]} matrix
*/
var NumMatrix = function (matrix) {
const m = matrix.length;
const n = matrix[0].length;
this.s = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
this.s[i + 1][j + 1] =
this.s[i + 1][j] +
this.s[i][j + 1] -
this.s[i][j] +
matrix[i][j];
}
}
};
/**
* @param {number} row1
* @param {number} col1
* @param {number} row2
* @param {number} col2
* @return {number}
*/
NumMatrix.prototype.sumRegion = function (row1, col1, row2, col2) {
return (
this.s[row2 + 1][col2 + 1] -
this.s[row2 + 1][col1] -
this.s[row1][col2 + 1] +
this.s[row1][col1]
);
};
/**
* Your NumMatrix object will be instantiated and called as such:
* var obj = new NumMatrix(matrix)
* var param_1 = obj.sumRegion(row1,col1,row2,col2)
*/
class NumMatrix {
private s: number[][];
constructor(matrix: number[][]) {
const m = matrix.length;
const n = matrix[0].length;
this.s = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
this.s[i + 1][j + 1] =
this.s[i + 1][j] +
this.s[i][j + 1] -
this.s[i][j] +
matrix[i][j];
}
}
}
sumRegion(row1: number, col1: number, row2: number, col2: number): number {
return (
this.s[row2 + 1][col2 + 1] -
this.s[row2 + 1][col1] -
this.s[row1][col2 + 1] +
this.s[row1][col1]
);
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* var obj = new NumMatrix(matrix)
* var param_1 = obj.sumRegion(row1,col1,row2,col2)
*/