-
Notifications
You must be signed in to change notification settings - Fork 10
/
01_test.py
232 lines (190 loc) · 11.6 KB
/
01_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
########################################################################
# import default libraries
########################################################################
import os
import csv
import sys
import gc
########################################################################
########################################################################
# import additional libraries
########################################################################
import numpy as np
import scipy.stats
# from import
from tqdm import tqdm
from sklearn import metrics
try:
from sklearn.externals import joblib
except:
import joblib
# original lib
import common as com
import keras_model
########################################################################
########################################################################
# load parameter.yaml
########################################################################
param = com.yaml_load()
#######################################################################
########################################################################
# output csv file
########################################################################
def save_csv(save_file_path,
save_data):
with open(save_file_path, "w", newline="") as f:
writer = csv.writer(f, lineterminator='\n')
writer.writerows(save_data)
########################################################################
########################################################################
# main 01_test.py
########################################################################
if __name__ == "__main__":
# check mode
# "development": mode == True
# "evaluation": mode == False
mode = com.command_line_chk()
if mode is None:
sys.exit(-1)
# make output result directory
os.makedirs(param["result_directory"], exist_ok=True)
# load base directory
dirs = com.select_dirs(param=param, mode=mode)
# initialize lines in csv for AUC and pAUC
csv_lines = []
if mode:
performance_over_all = []
# loop of the base directory
for idx, target_dir in enumerate(dirs):
print("\n===========================")
print("[{idx}/{total}] {target_dir}".format(target_dir=target_dir, idx=idx+1, total=len(dirs)))
machine_type = os.path.split(target_dir)[1]
print("============== MODEL LOAD ==============")
# load model file
model_file = "{model}/model_{machine_type}.hdf5".format(model=param["model_directory"],
machine_type=machine_type)
if not os.path.exists(model_file):
com.logger.error("{} model not found ".format(machine_type))
sys.exit(-1)
model = keras_model.load_model(model_file)
model.summary()
# load section names for conditioning
section_names_file_path = "{model}/section_names_{machine_type}.pkl".format(model=param["model_directory"],
machine_type=machine_type)
trained_section_names = joblib.load(section_names_file_path)
n_sections = trained_section_names.shape[0]
# load anomaly score distribution for determining threshold
score_distr_file_path = "{model}/score_distr_{machine_type}.pkl".format(model=param["model_directory"],
machine_type=machine_type)
shape_hat, loc_hat, scale_hat = joblib.load(score_distr_file_path)
# determine threshold for decision
decision_threshold = scipy.stats.gamma.ppf(q=param["decision_threshold"], a=shape_hat, loc=loc_hat, scale=scale_hat)
if mode:
# results for each machine type
csv_lines.append([machine_type])
csv_lines.append(["section", "domain", "AUC", "pAUC", "precision", "recall", "F1 score"])
performance = []
dir_names = ["source_test", "target_test"]
for dir_name in dir_names:
#list machine id
section_names = com.get_section_names(target_dir, dir_name=dir_name)
for section_name in section_names:
#search for section_name
#if the section_name is not found in the trained_section_names, store -1 in section_idx
temp_array = np.nonzero(trained_section_names == section_name)[0]
if temp_array.shape[0] == 0:
section_idx = -1
else:
section_idx = temp_array[0]
# load test file
files, y_true = com.file_list_generator(target_dir=target_dir,
section_name=section_name,
dir_name=dir_name,
mode=mode)
# setup anomaly score file path
anomaly_score_csv = "{result}/anomaly_score_{machine_type}_{section_name}_{dir_name}.csv".format(result=param["result_directory"],
machine_type=machine_type,
section_name=section_name,
dir_name=dir_name)
anomaly_score_list = []
# setup decision result file path
decision_result_csv = "{result}/decision_result_{machine_type}_{section_name}_{dir_name}.csv".format(result=param["result_directory"],
machine_type=machine_type,
section_name=section_name,
dir_name=dir_name)
decision_result_list = []
print("\n============== BEGIN TEST FOR A SECTION ==============")
y_pred = [0. for k in files]
for file_idx, file_path in tqdm(enumerate(files), total=len(files)):
try:
data = com.file_to_vectors(file_path,
n_mels=param["feature"]["n_mels"],
n_frames=param["feature"]["n_frames"],
n_fft=param["feature"]["n_fft"],
hop_length=param["feature"]["hop_length"],
power=param["feature"]["power"])
except:
com.logger.error("File broken!!: {}".format(file_path))
# make one-hot vector for conditioning
condition = np.zeros((data.shape[0], n_sections), float)
# if the id_name was found in the trained_section_names, make a one-hot vector
if section_idx != -1:
condition[:, section_idx : section_idx + 1] = 1
# 1D vector to 2D image
data = data.reshape(data.shape[0], param["feature"]["n_frames"], param["feature"]["n_mels"], 1)
p = model.predict(data)[:, section_idx : section_idx + 1]
y_pred[file_idx] = np.mean(np.log(np.maximum(1.0 - p, sys.float_info.epsilon)
- np.log(np.maximum(p, sys.float_info.epsilon))))
# store anomaly scores
anomaly_score_list.append([os.path.basename(file_path), y_pred[file_idx]])
# store decision results
if y_pred[file_idx] > decision_threshold:
decision_result_list.append([os.path.basename(file_path), 1])
else:
decision_result_list.append([os.path.basename(file_path), 0])
# output anomaly scores
save_csv(save_file_path=anomaly_score_csv, save_data=anomaly_score_list)
com.logger.info("anomaly score result -> {}".format(anomaly_score_csv))
# output decision results
save_csv(save_file_path=decision_result_csv, save_data=decision_result_list)
com.logger.info("decision result -> {}".format(decision_result_csv))
if mode:
# append AUC and pAUC to lists
auc = metrics.roc_auc_score(y_true, y_pred)
p_auc = metrics.roc_auc_score(y_true, y_pred, max_fpr=param["max_fpr"])
tn, fp, fn, tp = metrics.confusion_matrix(y_true, [1 if x > decision_threshold else 0 for x in y_pred]).ravel()
prec = tp / np.maximum(tp + fp, sys.float_info.epsilon)
recall = tp / np.maximum(tp + fn, sys.float_info.epsilon)
f1 = 2.0 * prec * recall / np.maximum(prec + recall, sys.float_info.epsilon)
csv_lines.append([section_name.split("_", 1)[1], dir_name.split("_", 1)[0], auc, p_auc, prec, recall, f1])
performance.append([auc, p_auc, prec, recall, f1])
performance_over_all.append([auc, p_auc, prec, recall, f1])
com.logger.info("AUC : {}".format(auc))
com.logger.info("pAUC : {}".format(p_auc))
com.logger.info("precision : {}".format(prec))
com.logger.info("recall : {}".format(recall))
com.logger.info("F1 score : {}".format(f1))
print("\n============ END OF TEST FOR A SECTION ============")
if mode:
# calculate averages for AUCs and pAUCs
amean_performance = np.mean(np.array(performance, dtype=float), axis=0)
csv_lines.append(["arithmetic mean", ""] + list(amean_performance))
hmean_performance = scipy.stats.hmean(np.maximum(np.array(performance, dtype=float), sys.float_info.epsilon), axis=0)
csv_lines.append(["harmonic mean", ""] + list(hmean_performance))
csv_lines.append([])
del data
del model
keras_model.clear_session()
gc.collect()
if mode:
csv_lines.append(["", "", "AUC", "pAUC", "precision", "recall", "F1 score"])
# calculate averages for AUCs and pAUCs
amean_performance = np.mean(np.array(performance_over_all, dtype=float), axis=0)
csv_lines.append(["arithmetic mean over all machine types, sections, and domains", ""] + list(amean_performance))
hmean_performance = scipy.stats.hmean(np.maximum(np.array(performance_over_all, dtype=float), sys.float_info.epsilon), axis=0)
csv_lines.append(["harmonic mean over all machine types, sections, and domains", ""] + list(hmean_performance))
csv_lines.append([])
# output results
result_path = "{result}/{file_name}".format(result=param["result_directory"], file_name=param["result_file"])
com.logger.info("results -> {}".format(result_path))
save_csv(save_file_path=result_path, save_data=csv_lines)