forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
all-possible-full-binary-trees.py
55 lines (47 loc) · 1.53 KB
/
all-possible-full-binary-trees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Time: O(n * 4^n / n^(3/2)) ~= sum of Catalan numbers from 1 .. N
# Space: O(n * 4^n / n^(3/2)) ~= sum of Catalan numbers from 1 .. N
# A full binary tree is a binary tree where each node has exactly 0 or 2 children.
#
# Return a list of all possible full binary trees with N nodes.
# Each element of the answer is the root node of one possible tree.
#
# Each node of each tree in the answer must have node.val = 0.
#
# You may return the final list of trees in any order.
#
# Example 1:
#
# Input: 7
# Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],
# [0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
# Explanation:
#
# Note:
# - 1 <= N <= 20
# Definition for a binary tree node.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution(object):
def __init__(self):
self.__memo = {1: [TreeNode(0)]}
def allPossibleFBT(self, N):
"""
:type N: int
:rtype: List[TreeNode]
"""
if N % 2 == 0:
return []
if N not in self.__memo:
result = []
for i in xrange(N):
for left in self.allPossibleFBT(i):
for right in self.allPossibleFBT(N-1-i):
node = TreeNode(0)
node.left = left
node.right = right
result.append(node)
self.__memo[N] = result
return self.__memo[N]