forked from CSAILVision/semantic-segmentation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
296 lines (238 loc) · 11.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import json
import torch
from torchvision import transforms
import numpy as np
from PIL import Image
def imresize(im, size, interp='bilinear'):
if interp == 'nearest':
resample = Image.NEAREST
elif interp == 'bilinear':
resample = Image.BILINEAR
elif interp == 'bicubic':
resample = Image.BICUBIC
else:
raise Exception('resample method undefined!')
return im.resize(size, resample)
class BaseDataset(torch.utils.data.Dataset):
def __init__(self, odgt, opt, **kwargs):
# parse options
self.imgSizes = opt.imgSizes
self.imgMaxSize = opt.imgMaxSize
# max down sampling rate of network to avoid rounding during conv or pooling
self.padding_constant = opt.padding_constant
# parse the input list
self.parse_input_list(odgt, **kwargs)
# mean and std
self.normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
def parse_input_list(self, odgt, max_sample=-1, start_idx=-1, end_idx=-1):
if isinstance(odgt, list):
self.list_sample = odgt
elif isinstance(odgt, str):
self.list_sample = [json.loads(x.rstrip()) for x in open(odgt, 'r')]
if max_sample > 0:
self.list_sample = self.list_sample[0:max_sample]
if start_idx >= 0 and end_idx >= 0: # divide file list
self.list_sample = self.list_sample[start_idx:end_idx]
self.num_sample = len(self.list_sample)
assert self.num_sample > 0
print('# samples: {}'.format(self.num_sample))
def img_transform(self, img):
# 0-255 to 0-1
img = np.float32(np.array(img)) / 255.
img = img.transpose((2, 0, 1))
img = self.normalize(torch.from_numpy(img.copy()))
return img
def segm_transform(self, segm):
# to tensor, -1 to 149
segm = torch.from_numpy(np.array(segm)).long() - 1
return segm
# Round x to the nearest multiple of p and x' >= x
def round2nearest_multiple(self, x, p):
return ((x - 1) // p + 1) * p
class TrainDataset(BaseDataset):
def __init__(self, root_dataset, odgt, opt, batch_per_gpu=1, **kwargs):
super(TrainDataset, self).__init__(odgt, opt, **kwargs)
self.root_dataset = root_dataset
# down sampling rate of segm labe
self.segm_downsampling_rate = opt.segm_downsampling_rate
self.batch_per_gpu = batch_per_gpu
# classify images into two classes: 1. h > w and 2. h <= w
self.batch_record_list = [[], []]
# override dataset length when trainig with batch_per_gpu > 1
self.cur_idx = 0
self.if_shuffled = False
def _get_sub_batch(self):
while True:
# get a sample record
this_sample = self.list_sample[self.cur_idx]
if this_sample['height'] > this_sample['width']:
self.batch_record_list[0].append(this_sample) # h > w, go to 1st class
else:
self.batch_record_list[1].append(this_sample) # h <= w, go to 2nd class
# update current sample pointer
self.cur_idx += 1
if self.cur_idx >= self.num_sample:
self.cur_idx = 0
np.random.shuffle(self.list_sample)
if len(self.batch_record_list[0]) == self.batch_per_gpu:
batch_records = self.batch_record_list[0]
self.batch_record_list[0] = []
break
elif len(self.batch_record_list[1]) == self.batch_per_gpu:
batch_records = self.batch_record_list[1]
self.batch_record_list[1] = []
break
return batch_records
def __getitem__(self, index):
# NOTE: random shuffle for the first time. shuffle in __init__ is useless
if not self.if_shuffled:
np.random.seed(index)
np.random.shuffle(self.list_sample)
self.if_shuffled = True
# get sub-batch candidates
batch_records = self._get_sub_batch()
# resize all images' short edges to the chosen size
if isinstance(self.imgSizes, list) or isinstance(self.imgSizes, tuple):
this_short_size = np.random.choice(self.imgSizes)
else:
this_short_size = self.imgSizes
# calculate the BATCH's height and width
# since we concat more than one samples, the batch's h and w shall be larger than EACH sample
batch_widths = np.zeros(self.batch_per_gpu, np.int32)
batch_heights = np.zeros(self.batch_per_gpu, np.int32)
for i in range(self.batch_per_gpu):
img_height, img_width = batch_records[i]['height'], batch_records[i]['width']
this_scale = min(
this_short_size / min(img_height, img_width), \
self.imgMaxSize / max(img_height, img_width))
batch_widths[i] = img_width * this_scale
batch_heights[i] = img_height * this_scale
# Here we must pad both input image and segmentation map to size h' and w' so that p | h' and p | w'
batch_width = np.max(batch_widths)
batch_height = np.max(batch_heights)
batch_width = int(self.round2nearest_multiple(batch_width, self.padding_constant))
batch_height = int(self.round2nearest_multiple(batch_height, self.padding_constant))
assert self.padding_constant >= self.segm_downsampling_rate, \
'padding constant must be equal or large than segm downsamping rate'
batch_images = torch.zeros(
self.batch_per_gpu, 3, batch_height, batch_width)
batch_segms = torch.zeros(
self.batch_per_gpu,
batch_height // self.segm_downsampling_rate,
batch_width // self.segm_downsampling_rate).long()
for i in range(self.batch_per_gpu):
this_record = batch_records[i]
# load image and label
image_path = os.path.join(self.root_dataset, this_record['fpath_img'])
segm_path = os.path.join(self.root_dataset, this_record['fpath_segm'])
img = Image.open(image_path).convert('RGB')
segm = Image.open(segm_path)
assert(segm.mode == "L")
assert(img.size[0] == segm.size[0])
assert(img.size[1] == segm.size[1])
# random_flip
if np.random.choice([0, 1]):
img = img.transpose(Image.FLIP_LEFT_RIGHT)
segm = segm.transpose(Image.FLIP_LEFT_RIGHT)
# note that each sample within a mini batch has different scale param
img = imresize(img, (batch_widths[i], batch_heights[i]), interp='bilinear')
segm = imresize(segm, (batch_widths[i], batch_heights[i]), interp='nearest')
# further downsample seg label, need to avoid seg label misalignment
segm_rounded_width = self.round2nearest_multiple(segm.size[0], self.segm_downsampling_rate)
segm_rounded_height = self.round2nearest_multiple(segm.size[1], self.segm_downsampling_rate)
segm_rounded = Image.new('L', (segm_rounded_width, segm_rounded_height), 0)
segm_rounded.paste(segm, (0, 0))
segm = imresize(
segm_rounded,
(segm_rounded.size[0] // self.segm_downsampling_rate, \
segm_rounded.size[1] // self.segm_downsampling_rate), \
interp='nearest')
# image transform, to torch float tensor 3xHxW
img = self.img_transform(img)
# segm transform, to torch long tensor HxW
segm = self.segm_transform(segm)
# put into batch arrays
batch_images[i][:, :img.shape[1], :img.shape[2]] = img
batch_segms[i][:segm.shape[0], :segm.shape[1]] = segm
output = dict()
output['img_data'] = batch_images
output['seg_label'] = batch_segms
return output
def __len__(self):
return int(1e10) # It's a fake length due to the trick that every loader maintains its own list
#return self.num_sampleclass
class ValDataset(BaseDataset):
def __init__(self, root_dataset, odgt, opt, **kwargs):
super(ValDataset, self).__init__(odgt, opt, **kwargs)
self.root_dataset = root_dataset
def __getitem__(self, index):
this_record = self.list_sample[index]
# load image and label
image_path = os.path.join(self.root_dataset, this_record['fpath_img'])
segm_path = os.path.join(self.root_dataset, this_record['fpath_segm'])
img = Image.open(image_path).convert('RGB')
segm = Image.open(segm_path)
assert(segm.mode == "L")
assert(img.size[0] == segm.size[0])
assert(img.size[1] == segm.size[1])
ori_width, ori_height = img.size
img_resized_list = []
for this_short_size in self.imgSizes:
# calculate target height and width
scale = min(this_short_size / float(min(ori_height, ori_width)),
self.imgMaxSize / float(max(ori_height, ori_width)))
target_height, target_width = int(ori_height * scale), int(ori_width * scale)
# to avoid rounding in network
target_width = self.round2nearest_multiple(target_width, self.padding_constant)
target_height = self.round2nearest_multiple(target_height, self.padding_constant)
# resize images
img_resized = imresize(img, (target_width, target_height), interp='bilinear')
# image transform, to torch float tensor 3xHxW
img_resized = self.img_transform(img_resized)
img_resized = torch.unsqueeze(img_resized, 0)
img_resized_list.append(img_resized)
# segm transform, to torch long tensor HxW
segm = self.segm_transform(segm)
batch_segms = torch.unsqueeze(segm, 0)
output = dict()
output['img_ori'] = np.array(img)
output['img_data'] = [x.contiguous() for x in img_resized_list]
output['seg_label'] = batch_segms.contiguous()
output['info'] = this_record['fpath_img']
return output
def __len__(self):
return self.num_sample
class TestDataset(BaseDataset):
def __init__(self, odgt, opt, **kwargs):
super(TestDataset, self).__init__(odgt, opt, **kwargs)
def __getitem__(self, index):
this_record = self.list_sample[index]
# load image
image_path = this_record['fpath_img']
img = Image.open(image_path).convert('RGB')
ori_width, ori_height = img.size
img_resized_list = []
for this_short_size in self.imgSizes:
# calculate target height and width
scale = min(this_short_size / float(min(ori_height, ori_width)),
self.imgMaxSize / float(max(ori_height, ori_width)))
target_height, target_width = int(ori_height * scale), int(ori_width * scale)
# to avoid rounding in network
target_width = self.round2nearest_multiple(target_width, self.padding_constant)
target_height = self.round2nearest_multiple(target_height, self.padding_constant)
# resize images
img_resized = imresize(img, (target_width, target_height), interp='bilinear')
# image transform, to torch float tensor 3xHxW
img_resized = self.img_transform(img_resized)
img_resized = torch.unsqueeze(img_resized, 0)
img_resized_list.append(img_resized)
output = dict()
output['img_ori'] = np.array(img)
output['img_data'] = [x.contiguous() for x in img_resized_list]
output['info'] = this_record['fpath_img']
return output
def __len__(self):
return self.num_sample