forked from brain-research/realistic-ssl-evaluation
-
Notifications
You must be signed in to change notification settings - Fork 5
/
build_tfrecords.py
265 lines (229 loc) · 8.66 KB
/
build_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/python3
#
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Converts data to TFRecords file format with Example protos.
For imagenet, we have unique per-example keys that we can use
for filtering out labels in a balanced way.
For non-imagenet datasets (i.e. those we deal with in this file),
we create a set of keys when we run this script.
Since running this script involves shuffling,
you *MUST* re-create your label_maps every time you create new tf-record files.
Otherwise you will not have a balanced number
of labeled examples for each class.
That ought to show up in the reader_test if you mess it up bad enough,
but who knows with these things.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import tarfile
import tempfile
from urllib.request import urlretrieve
import os
from absl import app
from absl import flags
import numpy as np
import scipy.io
from lib import dataset_utils
from lib import paths
flags.DEFINE_string(
"directory",
paths.BUILD_TFRECORDS_DOWNLOAD_PATH,
"Directory to download and write to.",
)
flags.DEFINE_integer("seed", 0, "Random seed for determinism.")
flags.DEFINE_string("dataset_name", "default", "Name of dataset")
FLAGS = flags.FLAGS
COUNTS = {
"svhn": {"train": 73257, "test": 26032, "valid": 7326, "extra": 531131},
"cifar10": {"train": 50000, "test": 10000, "valid": 5000, "extra": 0},
"imagenet_32": {
"train": 1281167,
"test": 50000,
"valid": 50050,
"extra": 0,
},
"cifar_unnormalized": {
"train": 50000,
"test": 10000,
"valid": 5000,
"extra": 0,
},
}
URLS = {
"svhn": "http://ufldl.stanford.edu/housenumbers/{}_32x32.mat",
"cifar10": "https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz",
}
_DATA_DIR = "data/imagenet_32"
def _load_imagenet_32():
train_file_names = ["train_data_batch_" + str(idx) for idx in range(1, 11)]
all_image_data_val = np.load(
os.path.join(_DATA_DIR, "val_data" + "_image.npy")
)
all_label_data_val = np.load(
os.path.join(_DATA_DIR, "val_data" + "_label.npy")
)
image_data_list_train = []
label_data_list_train = []
for file_name in train_file_names:
image_data_list_train.append(
np.load(os.path.join(_DATA_DIR, file_name + "_image.npy"))
)
label_data_list_train.append(
np.load(os.path.join(_DATA_DIR, file_name + "_label.npy"))
)
all_image_data_train = np.concatenate(image_data_list_train)
all_label_data_train = np.concatenate(label_data_list_train)
all_image_data_train = np.transpose(
all_image_data_train.reshape((-1, 3, 32, 32)), [0, 2, 3, 1]
)
all_image_data_val = np.transpose(
all_image_data_val.reshape((-1, 3, 32, 32)), [0, 2, 3, 1]
)
train_set = {
"images": np.reshape(all_image_data_train, (-1, 32, 32, 3)),
"labels": all_label_data_train - 1,
}
test_set = {
"images": np.reshape(all_image_data_val, (-1, 32, 32, 3)),
"labels": all_label_data_val - 1,
}
return train_set, test_set
def _load_svhn():
splits = collections.OrderedDict()
for split in ["train", "test", "extra"]:
with tempfile.NamedTemporaryFile() as f:
urlretrieve(URLS["svhn"].format(split), f.name)
data_dict = scipy.io.loadmat(f.name)
dataset = {}
dataset["images"] = np.transpose(data_dict["X"], [3, 0, 1, 2])
dataset["labels"] = data_dict["y"].reshape((-1))
# SVHN raw data uses labels from 1 to 10; use 0 to 9 instead.
dataset["labels"][dataset["labels"] == 10] = 0
splits[split] = dataset
return splits.values()
def _load_cifar10(normalize):
def unflatten(images):
return images.reshape((-1, 3, 32, 32)).transpose([0, 2, 3, 1])
with tempfile.NamedTemporaryFile() as f:
urlretrieve(URLS["cifar10"], f.name)
tar = tarfile.open(fileobj=f)
train_data_batches, train_data_labels = [], []
for batch in range(1, 6):
data_dict = scipy.io.loadmat(
tar.extractfile(
"cifar-10-batches-mat/data_batch_{}.mat".format(batch)
)
)
train_data_batches.append(data_dict["data"])
train_data_labels.append(data_dict["labels"].flatten())
train_set = {
"images": np.concatenate(train_data_batches, axis=0),
"labels": np.concatenate(train_data_labels, axis=0),
}
data_dict = scipy.io.loadmat(
tar.extractfile("cifar-10-batches-mat/test_batch.mat")
)
test_set = {
"images": data_dict["data"],
"labels": data_dict["labels"].flatten(),
}
if normalize:
train_set["images"] = dataset_utils.gcn(train_set["images"])
test_set["images"] = dataset_utils.gcn(test_set["images"])
zca_transform = dataset_utils.get_zca_transformer(
train_set["images"], root_path=FLAGS.directory
)
train_set["images"] = zca_transform(train_set["images"])
test_set["images"] = zca_transform(test_set["images"])
train_set["images"] = unflatten(train_set["images"])
test_set["images"] = unflatten(test_set["images"])
train_set["images"] = train_set["images"].astype(
dataset_utils.DATASET_DTYPE["cifar10"].as_numpy_dtype
)
test_set["images"] = test_set["images"].astype(
dataset_utils.DATASET_DTYPE["cifar10"].as_numpy_dtype
)
return train_set, test_set
def main(_):
rng = np.random.RandomState(FLAGS.seed)
train_count = COUNTS[FLAGS.dataset_name]["train"]
validation_count = COUNTS[FLAGS.dataset_name]["valid"]
test_count = COUNTS[FLAGS.dataset_name]["test"]
extra_count = COUNTS[FLAGS.dataset_name]["extra"]
extra_set = None # In general, there won't be extra data.
if FLAGS.dataset_name == "svhn":
train_set, test_set, extra_set = _load_svhn()
elif FLAGS.dataset_name == "cifar10":
train_set, test_set = _load_cifar10(normalize=True)
elif FLAGS.dataset_name == "cifar_unnormalized":
train_set, test_set = _load_cifar10(normalize=False)
elif FLAGS.dataset_name == "imagenet_32":
train_set, test_set = _load_imagenet_32()
else:
raise ValueError("Unknown dataset", FLAGS.dataset_name)
# Shuffle the training data
indices = rng.permutation(train_set["images"].shape[0])
train_set["images"] = train_set["images"][indices]
train_set["labels"] = train_set["labels"][indices]
# If the extra set exists, shuffle it.
if extra_set is not None:
extra_indices = rng.permutation(extra_set["images"].shape[0])
extra_set["images"] = extra_set["images"][extra_indices]
extra_set["labels"] = extra_set["labels"][extra_indices]
# Split the training data into training and validation data
train_images = train_set["images"][validation_count:]
train_labels = train_set["labels"][validation_count:]
validation_images = train_set["images"][:validation_count]
validation_labels = train_set["labels"][:validation_count]
validation_set = {"images": validation_images, "labels": validation_labels}
train_set = {"images": train_images, "labels": train_labels}
# Convert to Examples and write the result to TFRecords.
dataset_utils.convert_to(
train_set["images"],
train_set["labels"],
train_count - validation_count,
"train",
FLAGS.directory,
FLAGS.dataset_name,
)
dataset_utils.convert_to(
test_set["images"],
test_set["labels"],
test_count,
"test",
FLAGS.directory,
FLAGS.dataset_name,
)
dataset_utils.convert_to(
validation_set["images"],
validation_set["labels"],
validation_count,
"validation",
FLAGS.directory,
FLAGS.dataset_name,
)
if extra_set is not None:
dataset_utils.convert_to(
extra_set["images"],
extra_set["labels"],
extra_count,
"extra",
FLAGS.directory,
FLAGS.dataset_name,
)
if __name__ == "__main__":
app.run(main)