-
Notifications
You must be signed in to change notification settings - Fork 0
/
UCI HAR Dataset.txt
executable file
·82 lines (55 loc) · 6.16 KB
/
UCI HAR Dataset.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
===================================================================================================
Human Activity Recognition Using Smartphones Dataset
Version 1.0
===================================================================================================
Jorge L. Reyes-Ortiz(1,2), Davide Anguita(1), Alessandro Ghio(1), Luca Oneto(1) and Xavier Parra(2)
1 - Smartlab - Non-Linear Complex Systems Laboratory
DITEN - Università degli Studi di Genova, Genoa (I-16145), Italy.
2 - CETpD - Technical Research Centre for Dependency Care and Autonomous Living
Universitat Politècnica de Catalunya (BarcelonaTech). Vilanova i la Geltrú (08800), Spain
activityrecognition '@' smartlab.ws
===================================================================================================
The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.
The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.
For each record it is provided:
======================================
- Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
- Triaxial Angular velocity from the gyroscope.
- A 561-feature vector with time and frequency domain variables.
- Its activity label.
- An identifier of the subject who carried out the experiment.
The dataset includes the following files:
=========================================
- 'README.txt'
- 'features_info.txt': Shows information about the variables used on the feature vector.
- 'features.txt': List of all features.
- 'activity_labels.txt': Links the class labels with their activity name.
- 'train/X_train.txt': Training set.
- 'train/y_train.txt': Training labels.
- 'test/X_test.txt': Test set.
- 'test/y_test.txt': Test labels.
The following files are available for the train and test data. Their descriptions are equivalent.
- 'train/subject_train.txt': Each row identifies the subject who performed the activity for each window sample. Its range is from 1 to 30.
- 'train/Inertial Signals/total_acc_x_train.txt': The acceleration signal from the smartphone accelerometer X axis in standard gravity units 'g'. Every row shows a 128 element vector. The same description applies for the 'total_acc_x_train.txt' and 'total_acc_z_train.txt' files for the Y and Z axis.
- 'train/Inertial Signals/body_acc_x_train.txt': The body acceleration signal obtained by subtracting the gravity from the total acceleration.
- 'train/Inertial Signals/body_gyro_x_train.txt': The angular velocity vector measured by the gyroscope for each window sample. The units are radians/second.
Notes:
======
- Features are normalized and bounded within [-1,1].
- Each feature vector is a row on the text file.
- The units used for the accelerations (total and body) are 'g's (gravity of earth -> 9.80665 m/seg2).
- The gyroscope units are rad/seg.
- A video of the experiment including an example of the 6 recorded activities with one of the participants can be seen in the following link: http://www.youtube.com/watch?v=XOEN9W05_4A
For more information about this dataset please contact: activityrecognition '@' smartlab.ws
License:
========
Use of this dataset in publications must be acknowledged by referencing the following publication [1]
[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.
This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.
Other Related Publications:
===========================
[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge L. Reyes-Ortiz. Energy Efficient Smartphone-Based Activity Recognition using Fixed-Point Arithmetic. Journal of Universal Computer Science. Special Issue in Ambient Assisted Living: Home Care. Volume 19, Issue 9. May 2013
[3] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. 4th International Workshop of Ambient Assited Living, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3-5, 2012. Proceedings. Lecture Notes in Computer Science 2012, pp 216-223.
[4] Jorge Luis Reyes-Ortiz, Alessandro Ghio, Xavier Parra-Llanas, Davide Anguita, Joan Cabestany, Andreu Català. Human Activity and Motion Disorder Recognition: Towards Smarter Interactive Cognitive Environments. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.
==================================================================================================
Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita and Xavier Parra. November 2013.