Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Trying to reproduce paper results HRSC2016 #91

Open
Artcs1 opened this issue Mar 3, 2022 · 4 comments
Open

Trying to reproduce paper results HRSC2016 #91

Artcs1 opened this issue Mar 3, 2022 · 4 comments

Comments

@Artcs1
Copy link

Artcs1 commented Mar 3, 2022

Hi, First Great work.

I am trying to reproduce HRSC results as the KLD paper, but I always get like 0.03 AP below for each method. I am using bs 4, and training for 20 epochs with the cfgs in the corresponding 'configs' folder. Do you have any clue what is going on?

Greetings

@yangxue0827
Copy link
Owner

Try bs=1 and use
python train.py

@Artcs1
Copy link
Author

Artcs1 commented Mar 4, 2022

I run a new experiment as suggested but I am still having a lower AP than reported. Just to clarify in configs file (KL_FUNC = sqrt, KL_TAU = 2.0). Were those values ​​used to generate the results of the original paper?

@yangxue0827
Copy link
Owner

@Artcs1
Copy link
Author

Artcs1 commented Mar 4, 2022

I am using that configuration with a RTX A4000: My output was:

rotation eval:
Writing ship VOC resutls file
Threshold: 0.5
cls : ship|| Recall: 0.9332247557003257 || Precison: 0.30285412262156447|| AP: 0.8559664693973696
F1:0.8593960007045868 P:0.8784013605442177 R:0.8412052117263844
mAP is : 0.8559664693973696

Threshold: 0.55
cls : ship|| Recall: 0.9210097719869706 || Precison: 0.29889006342494717|| AP: 0.8488067570226043
F1:0.8544043201723106 P:0.8732993197278912 R:0.8363192182410424
mAP is : 0.8488067570226043

Threshold: 0.6000000000000001
cls : ship|| Recall: 0.9014657980456026 || Precison: 0.2925475687103594|| AP: 0.8227167138601044
F1:0.845252905863143 P:0.8639455782312925 R:0.8273615635179153
mAP is : 0.8227167138601044

Threshold: 0.6500000000000001
cls : ship|| Recall: 0.8745928338762216 || Precison: 0.28382663847780126|| AP: 0.7719636329409395
F1:0.8302778642663381 P:0.8486394557823129 R:0.8127035830618893
mAP is : 0.7719636329409395

Threshold: 0.7000000000000002
cls : ship|| Recall: 0.8257328990228013 || Precison: 0.2679704016913319|| AP: 0.7521026220294736
F1:0.798663887562038 P:0.8163265306122449 R:0.7817589576547231
mAP is : 0.7521026220294736

Threshold: 0.7500000000000002
cls : ship|| Recall: 0.74185667752443 || Precison: 0.24075052854122622|| AP: 0.6430973163191885
F1:0.7287434102205883 P:0.766397124887691 R:0.6946254071661238
mAP is : 0.6430973163191885

Threshold: 0.8000000000000003
cls : ship|| Recall: 0.5773615635179153 || Precison: 0.1873678646934461|| AP: 0.4266389646833525
F1:0.5775259817801465 P:0.6073674752920036 R:0.5504885993485342
mAP is : 0.4266389646833525

Threshold: 0.8500000000000003
cls : ship|| Recall: 0.30700325732899025 || Precison: 0.09963002114164905|| AP: 0.19439607500936473
F1:0.30941593507136134 P:0.3296500920810313 R:0.2915309446254072
mAP is : 0.19439607500936473

Threshold: 0.9000000000000004
cls : ship|| Recall: 0.06921824104234528 || Precison: 0.022463002114164906|| AP: 0.09090909090909091
F1:0.07111889102245027 P:0.0851305334846765 R:0.061074918566775244
mAP is : 0.09090909090909091

Threshold: 0.9500000000000004
cls : ship|| Recall: 0.003257328990228013 || Precison: 0.0010570824524312897|| AP: 0.0036363636363636364
F1:0.0034522429356127087 P:0.003683241252302026 R:0.003257328990228013
mAP is : 0.0036363636363636364

mAP50:95 : 0.5410234005807852

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants