-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
55 lines (43 loc) · 1.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import numpy as np
from keras.models import load_model
model = load_model("./model2-008.model")
labels_dict = {0: 'without mask', 1: 'mask'}
color_dict = {0: (0, 0, 255), 1: (0, 255, 0)}
size = 4
webcam = cv2.VideoCapture(0) # Use camera 0
# We load the xml file
classifier = cv2.CascadeClassifier(
'venv/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml')
while True:
(rval, im) = webcam.read()
im = cv2.flip(im, 1, 1) # Flip to act as a mirror
# Resize the image to speed up detection
mini = cv2.resize(im, (im.shape[1] // size, im.shape[0] // size))
# detect MultiScale / faces
faces = classifier.detectMultiScale(mini)
# Draw rectangles around each face
for f in faces:
(x, y, w, h) = [v * size for v in f] # Scale the shapesize backup
# Save just the rectangle faces in SubRecFaces
face_img = im[y:y + h, x:x + w]
resized = cv2.resize(face_img, (150, 150))
normalized = resized / 255.0
reshaped = np.reshape(normalized, (1, 150, 150, 3))
reshaped = np.vstack([reshaped])
result = model.predict(reshaped)
# print(result)
label = np.argmax(result, axis=1)[0]
cv2.rectangle(im, (x, y), (x + w, y + h), color_dict[label], 2)
cv2.rectangle(im, (x, y - 40), (x + w, y), color_dict[label], -1)
cv2.putText(im, labels_dict[label], (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
# Show the image
cv2.imshow('LIVE', im)
key = cv2.waitKey(10)
# if Esc key is press then break out of the loop
if key == 27: # The Esc key
break
# Stop video
webcam.release()
# Close all started windows
cv2.destroyAllWindows()