-
Notifications
You must be signed in to change notification settings - Fork 0
/
TestAP.py
275 lines (223 loc) · 9.89 KB
/
TestAP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import numpy as np
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import torchvision.transforms as transforms
import math
import torchvision
import csv
import random
import cv2
import time
import sys
import json
import argparse
import os
from math import pi
from PIL import Image
from torch.autograd import Variable
from canny_edge_detector import cannyEdgeDetector
from skimage.measure import approximate_polygon, find_contours
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
from wisdmapi import wisdm_getlatlon
from wisdmapi import wisdm_checkavi
from googleapi import google_getaerial
from googleapi import google_avimarker
from bingapi import bing_getaerial
from bingapi import bing_avimarker
# Get inputs
parser = argparse.ArgumentParser()
parser.add_argument("-P", "--postcode", help="postcode in format YO105DD")
parser.add_argument("-A", "--address", help="address in format '2 CRANBROOK AVENUE'")
parser.add_argument("-L", "--latlon", help="latlon in format '53.964962, -1.124317', if "
"latlon and address are both given, latlon overides address")
parser.add_argument("-W", "--wisdmcheck", choices=['Y', 'N'], default='Y',
help="run wisdm availability check or not, default is Y")
args = parser.parse_args()
addr = str(args.address)
postcode = str(args.postcode)
center_latlon = args.latlon
if addr is None or postcode is None and center_latlon is None:
raise NameError("Please provide address+postcode or latlon")
st = time.time()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
loader = transforms.Compose([transforms.ToTensor()])
zoom = 20 # map zoom level
map_width = 600 # map pixel size
map_height = 600
def image_loader(image_name):
image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
# compute image gradient
def gradient_img(img):
img = img.squeeze(0)
ten = torch.unbind(img)
x = ten[0].unsqueeze(0).unsqueeze(0)
a = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])
conv1 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
conv1.weight = nn.Parameter(torch.from_numpy(a).float().unsqueeze(0).unsqueeze(0))
G_x = conv1(Variable(x)).data.view(1, x.shape[2], x.shape[3])
b = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
conv2 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
conv2.weight = nn.Parameter(torch.from_numpy(b).float().unsqueeze(0).unsqueeze(0))
G_y = conv2(Variable(x)).data.view(1, x.shape[2], x.shape[3])
G = torch.sqrt(torch.pow(G_x, 2) + torch.pow(G_y, 2))
# theta = np.arctan2(G_y, G_x)
return G
def get_model_instance_segementation(num_classes):
# load an instance model pretrained on COCO
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
# get number of input features from classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pretrained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# get number of input features from the mask classifier
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
# replace the mask predictor with a new one
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes)
return model
# convert lat lon to pixel number
def LatLontoXY(lat_center,lon_center,zoom):
C =(256/(2*pi) )* 2**zoom
x=C*(math.radians(lon_center)+pi)
y=C*(pi-math.log( math.tan( (pi/4) + math.radians(lat_center)/2 ) ))
return x,y
# convert pixel relative to center to latlon
def xy2LatLon(lat_center,lon_center,zoom,width_internal,height_internal,pxX_internal,pxY_internal):
xcenter,ycenter=LatLontoXY(lat_center,lon_center,zoom)
xPoint=xcenter- (width_internal/2-pxX_internal)
ypoint=ycenter -(height_internal/2-pxY_internal)
C = (256 / (2 * pi)) * 2 ** zoom
M = (xPoint/C)-pi
N =-(ypoint/C) + pi
lon_Point =math.degrees(M)
lat_Point =math.degrees( (math.atan( math.e**N)-(pi/4))*2 )
return lat_Point,lon_Point
def pixelsize(lat_center, zoom):
size = 156543.03392 * math.cos(math.radians(lat_center)) / math.pow(2, zoom)
return size
def extract(list, idx): # to extract the idxth item in all sublists
return [item[idx] for item in list]
# get center lat lon if only address+post code is given
if center_latlon is None:
center_latlon = wisdm_getlatlon(postcode, addr)
index = center_latlon.index(',')
lat_center = np.float(center_latlon[0:index])
lon_center = np.float(center_latlon[index+2:-1])
# get map image
if not os.path.exists('./mapsamples'):
os.makedirs('./mapsamples')
bing_getaerial(center_latlon)
img = Image.open('./mapsamples/testmap.png')
img = loader(img.convert('RGB'))
num_classes = 2
# load model from a trained network
model = get_model_instance_segementation(num_classes)
model.load_state_dict(torch.load('MRCNNRes50(COCO).pth', map_location=device))
# let the model know the number of detections per image
model.roi_heads.detections_per_img = 3
model.eval()
model.to(device)
with torch.no_grad():
prediction = model([img.to(device)])
img1 = Image.fromarray(img.mul(255).permute(1, 2, 0).byte().numpy())
num_obj = len(prediction[0]['masks'][:, 0])
# fig, axs = plt.subplots(2, num_obj+1, figsize=(20, 10))
# axs[0, 0].imshow(img1)
# axs[0, 0].set_title('original image')
mask_identified = 0
for idx in range(1, num_obj+1):
img3 = Image.fromarray(prediction[0]['masks'][idx-1, 0].mul(255).byte().cpu().numpy())
img_t = np.array(img3)
ret, img3 = cv2.threshold(img_t, 200, 255, cv2.THRESH_TOZERO)
if img_t[300, 300] != 0 and mask_identified == 0:
imgx = img3
mask_identified = 1
# axs[0, idx].imshow(img3)
# axs[0, idx].set_title('mask%d' % idx)
img3 = loader(img3).unsqueeze(0)
img3.to(device, torch.float)
grad = gradient_img(img3)
grad = grad.detach().cpu().squeeze(0)
# axs[1, idx].imshow(grad)
# axs[1, idx].set_title('gradient%d' % idx)
to_grayscale = transforms.Compose([transforms.Grayscale(num_output_channels=1),
transforms.ToTensor()])
img1_grayscale = to_grayscale(img1)
imgx_rgb = Image.fromarray(imgx).convert('RGB')
imgx = loader(imgx_rgb)
edge = cannyEdgeDetector(imgx).detect()
edge = edge[0]
# find contours and generate polygon using skimage
contours = find_contours(edge, 0, 'high')
result_polygon = np.zeros(edge.shape + (3, ), np.uint8)
for contour in contours:
polygon = approximate_polygon(contour, tolerance=1)
polygon = polygon.astype(np.int).tolist()
for idx, coords in enumerate(polygon[:-1]):
y1, x1, y2, x2 = coords + polygon[idx + 1]
result_polygon = cv2.line(result_polygon, (x1, y1), (x2, y2), (0, 255, 0), 1)
img1_np = np.array(img1)
result_polygon = Image.fromarray(result_polygon)
result_polygon.save('mapsamples/edge.png','png')
imgx_rgb.save('mapsamples/mask.png','png')
result_polygon_gray = to_grayscale(result_polygon)
result_polygon_np = np.array(result_polygon_gray)
edge_idx = np.where(result_polygon_np.squeeze() != 0)
edge_t = list(zip(*edge_idx)) # 'transpose' the tuple
edge_idx_random = random.sample(edge_t, 50) # randomly pick some edge pixels
edge_latlons = []
# find latlons of the edge pixels
for edge_y, edge_x in edge_idx_random:
lat, lon = xy2LatLon(lat_center, lon_center, zoom, map_width, map_height, edge_x, edge_y)
latlon = str(lat)+','+str(lon)
edge_latlons.append(latlon)
# get pixel size
pixel_size = pixelsize(lat_center, zoom)
dist_pixel = 1 # in meters, defines the size of the box to choose the next pixel
dist_num_pixel = math.ceil(dist_pixel / pixel_size) # convert to number of pixels
# randomly pick 1 pixel to start
edge_idx_random = random.sample(edge_t, 1)
avi_all = []
avi_comb_all = []
ap_names_all = []
inference_time = time.time() - st
print('Time before calling wisdm availability check is ', inference_time)
if args.wisdmcheck == 'N':
json_string = json.dumps([{'Edge_latlon': edge_latlon}
for edge_latlon in edge_latlons])
with open('./mapsamples/Latlon_nocheck.txt', 'w') as file: # save the dict to file
file.write(json_string)
dn = os.path.dirname(os.path.realpath(__file__))
dirname = str(lat_center) + '_' + str(lon_center)
if not os.path.exists('./' + dirname):
os.makedirs('./' + dirname)
os.system('mv ' + './mapsamples/Latlon_nocheck.txt ' + dirname)
sys.exit('Availability is not checked by WISDM, dump edge latlons')
for latlon in edge_latlons:
ap_names, avis, avi_comb = wisdm_checkavi(latlon)
avi_all.append(avis)
ap_names_all.append(ap_names)
avi_comb_all.append(avi_comb)
time.sleep(0.5) # wisdm crashes if the api is request too frequently
bing_avimarker(center_latlon, edge_latlons, avi_all, avi_comb_all, ap_names_all)
num_aps = len(avi_all[0])
for idx in range(num_aps):
json_string = json.dumps([{'Edge_latlon': edge_latlon, 'Result': avi}
for edge_latlon, avi in zip(edge_latlons, extract(avi_all, idx))])
# save result image for each AP
with open('./mapsamples/Latlon_result_' + ap_names_all[0][idx] + '.txt', 'w') as file: # save the dict to file
file.write(json_string)
json_string = json.dumps([{'Edge_latlon': edge_latlon, 'Result': avi}
for edge_latlon, avi in zip(edge_latlons, avi_comb_all)])
with open('./mapsamples/Latlon_result_allAPs.txt', 'w') as file: # save the dict to file
file.write(json_string)
dirname = str(lat_center) + '_' + str(lon_center)
if not os.path.exists('./' + dirname):
os.makedirs('./' + dirname)
os.system('mv ' + './mapsamples/testmap* ' + dirname)
os.system('mv ' + './mapsamples/Latlon* ' + dirname)