-
Notifications
You must be signed in to change notification settings - Fork 5
/
2_phyloseq_tutorial.R
618 lines (521 loc) · 23 KB
/
2_phyloseq_tutorial.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#' ---
#' title: "16S rDNA amplicon sequencing analysis using R (Part 2: phyloseq)"
#' description: |
#' Demonstration of 16S rRNA-based microbiome analysis using dada2, phyloseq, LEfSe, picrust2 and other tools
#' author:
#' - name: "I-Hsuan Lin"
#' url: https://github.com/ycl6
#' affiliation: University of Manchester
#' affiliation_url: https://www.manchester.ac.uk/
#' date: '`r format(Sys.Date(), "%B %d, %Y")`'
#' output:
#' rmarkdown::html_document:
#' theme: united
#' highlight: tango
#' self_contained: true
#' toc: true
#' toc_depth: 3
#' toc_float:
#' collapsed: false
#' smooth_scroll: true
#' ---
#'
#'
#' -----
#'
#' **16S-rDNA-V3-V4 repository:** https://github.com/ycl6/16S-rDNA-V3-V4
#'
#' **phyloseq:** [GitHub](https://github.com/joey711/phyloseq), [Documentation](https://joey711.github.io/phyloseq/index.html), [Paper](https://doi.org/10.1371/journal.pone.0061217)
#'
#' **GUniFrac:** [Paper](https://doi.org/10.1093/bioinformatics/bts342)
#'
#' **Demo Dataset:** [PRJEB27564](https://www.ncbi.nlm.nih.gov/bioproject/PRJEB27564) from *[Gut Microbiota in Parkinson's Disease: Temporal Stability and Relations to Disease Progression.](https://pubmed.ncbi.nlm.nih.gov/31221587/) EBioMedicine. 2019;44:691-707*
#'
#' **License:** GPL-3.0
#'
#' -----
#'
#' # Workflow (Continues from Part 1)
#'
#' # Start `R`
#'
#' ```
#' cd /ngs/16S-Demo/PRJEB27564
#'
#' R
#' ```
#'
#' # Load package and set path
#'
## ----load-libraries, message = FALSE------------------------------------------
library("data.table")
library("phyloseq")
library("DESeq2")
library("ggplot2")
library("ggbeeswarm")
library("ggrepel")
library("vegan")
library("tidyverse")
#'
#' Set the full-path to additional scripts
#'
#' > **Note:** Remember to change the PATH to the script accordingly
#'
## ----set-taxa_summary-Rscript-path, eval = FALSE------------------------------
## source("/path-to-script/taxa_summary.R", local = TRUE)
#'
#'
#' # Load saved workspace from Part 1
#'
## ----load-image---------------------------------------------------------------
load("1_dada2_tutorial.RData")
#'
#' Check `phyloseq` object
#'
## -----------------------------------------------------------------------------
ps
#'
#' # Filter Taxa
#'
#' ## Subset `ps` using `subset_taxa`
#'
#' Here, we limit the taxa to those from Bacteria, Phylum and Class in not unassigned, and not belonging to the Mitochondria Family
#'
## ----subset_taxa--------------------------------------------------------------
ps0 = subset_taxa(ps, Kingdom == "Bacteria" & !is.na(Phylum) & !is.na(Class) &
Family != "Mitochondria")
#'
#' ## Create a total counts data.table
#'
## ----create-tdt, warning = FALSE, fig.width = 6, fig.height = 6, fig.align = "center", dpi = 100----
tdt = data.table(setDT(as.data.frame(tax_table(ps0))),
TotalCounts = taxa_sums(ps0), SV = taxa_names(ps0))
tdt
ggplot(tdt, aes(TotalCounts)) + geom_histogram(bins = 50) + theme_bw() +
ggtitle("Histogram of Total Counts")
tdt[(TotalCounts == 1), .N] # singletons
tdt[(TotalCounts == 2), .N] # doubletons
# taxa cumulative sum
taxcumsum = tdt[, .N, by = TotalCounts]
setkey(taxcumsum, TotalCounts)
taxcumsum[, CumSum := cumsum(N)]
# Plot the cumulative sum of ASVs against the total counts
pCumSum = ggplot(taxcumsum, aes(TotalCounts, CumSum)) + geom_point() + theme_bw() +
xlab("Filtering Threshold") + ylab("ASV Filtered")
png("images/FilterTaxa-taxa-abundance.png", width = 8, height = 8, units = "in", res = 300)
gridExtra::grid.arrange(pCumSum, pCumSum + xlim(0, 500),
pCumSum + xlim(0, 100), pCumSum + xlim(0, 50), nrow = 2,
top = "ASVs that would be filtered vs. minimum taxa counts threshold")
invisible(dev.off())
#'
#'
#' ## Create a prevalence data.table
#'
## ----create-mdt, warning = FALSE, fig.width = 6, fig.height = 6, fig.align = "center", dpi = 100----
mdt = fast_melt(ps0)
mdt
prevdt = mdt[, list(Prevalence = sum(count > 0), TotalCounts = sum(count),
MaxCounts = max(count)), by = TaxaID]
prevdt
ggplot(prevdt, aes(Prevalence)) + geom_histogram(bins = 50) + theme_bw() +
ggtitle("Histogram of Taxa Prevalence")
prevdt[(Prevalence == 1), .N] # singletons
prevdt[(Prevalence == 2), .N] # doubletons
ggplot(prevdt, aes(MaxCounts)) + geom_histogram(bins = 100) + xlim(0, 500) + theme_bw() +
ggtitle("Histogram of Maximum TotalCounts")
table(prevdt$MaxCounts)[1:50]
prevdt[(MaxCounts == 1)] # singletons
# taxa cumulative sum
prevcumsum = prevdt[, .N, by = Prevalence]
setkey(prevcumsum, Prevalence)
prevcumsum[, CumSum := cumsum(N)]
# Plot the cumulative sum of ASVs against the prevalence
pPrevCumSum = ggplot(prevcumsum, aes(Prevalence, CumSum)) + geom_point(size = 2, alpha = 0.5) +
theme_bw() + xlab("Filtering Threshold") + ylab("ASVs Filtered") +
ggtitle("ASVs that would be filtered vs. minimum sample count threshold")
png("images/FilterTaxa-taxa-prevalence.png", width = 8, height = 8, units = "in", res = 300)
pPrevCumSum
invisible(dev.off())
#'
#'
#' Prevalence vs. Total Count Scatter plot
#'
## ----warning = FALSE----------------------------------------------------------
png("images/FilterTaxa-Prevalence-TotalCounts.png", width = 8, height = 8, units = "in", res = 300)
ggplot(prevdt, aes(Prevalence, TotalCounts)) + geom_point(size = 2, alpha = 0.5) +
scale_y_log10() + theme_bw() + xlab("Prevalence [No. Samples]") + ylab("TotalCounts [Taxa]")
invisible(dev.off())
#'
#'
#' Colored by phylum
#'
## ----addPhylum, warning = FALSE-----------------------------------------------
addPhylum = unique(copy(mdt[, list(TaxaID, Phylum)]))
# Join by TaxaID
setkey(prevdt, TaxaID)
setkey(addPhylum, TaxaID)
prevdt = addPhylum[prevdt]
setkey(prevdt, Phylum)
png("images/FilterTaxa-Prevalence-TotalCounts-Phylum.png", width = 8, height = 8,
units = "in", res = 300)
ggplot(prevdt, aes(Prevalence, TotalCounts, color = Phylum)) +
geom_point(size = 1, alpha = 0.5) + scale_y_log10() + theme_bw() +
facet_wrap(~Phylum, nrow = 4) + theme(legend.position="none") +
xlab("Prevalence [No. Samples]") + ylab("Total Abundance")
invisible(dev.off())
#'
#'
#' ## Define filter threshold
#'
#' > Remember to review the **images/FilterTaxa-\*.png** plots to select the best paramters
#'
## ----filter-threshold---------------------------------------------------------
prevalenceThreshold = 5
abundanceThreshold = 10
maxThreshold = 5
#'
#' ## Perform taxa filtering
#'
## ----filter-ps0---------------------------------------------------------------
keepTaxa = prevdt[(Prevalence > prevalenceThreshold &
TotalCounts > abundanceThreshold &
MaxCounts > maxThreshold), TaxaID]
ps1 = prune_taxa(keepTaxa, ps0)
phy_tree(ps1) = ape::root(phy_tree(ps1), sample(taxa_names(ps1), 1), resolve.root = TRUE)
ps1
#'
#' # Create output files
#'
#' ## Create FASTA file
#'
## ----output-fasta, warning = FALSE, cache = TRUE------------------------------
dada2::uniquesToFasta(df[rownames(df) %in% taxa_names(ps1),], "outfiles/expr.asv.fasta",
ids = df[rownames(df) %in% taxa_names(ps1),]$id)
#'
#' ## Create BIOM file
#'
## ----output-biom, warning = FALSE, cache = TRUE-------------------------------
biomformat::write_biom(biomformat::make_biom(data = t(as.matrix(otu_table(ps1)))),
"outfiles/expr.biom")
#'
#' ## Create ASV and Taxonomy tables
#'
## ----output-otu-tax-tables, warning = FALSE, cache = TRUE---------------------
write.table(as.data.table(otu_table(ps1), keep.rownames = T), file = "outfiles/expr.otu_table.txt",
sep = "\t", quote = F, row.names = F, col.names = T)
write.table(as.data.table(tax_table(ps1), keep.rownames = T), file = "outfiles/expr.tax_table.txt",
sep = "\t", quote = F, row.names = F, col.names = T)
#'
#' ## Create raw abundance tables
#'
#'
## ----output-abund-tables, warning = FALSE, cache = TRUE-----------------------
write.table(ps1 %>% psmelt() %>% arrange(OTU) %>% rename(ASV = OTU) %>%
select(ASV, Kingdom, Phylum, Class, Order, Family, Genus, Species, Sample_ID, Abundance) %>%
spread(Sample_ID, Abundance),
file = "outfiles/expr.abundance.all.txt", sep = "\t",
quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Phylum") %>% psmelt() %>%
select(Phylum, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.abundance.abphy.txt", sep = "\t",
quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Class") %>% psmelt() %>%
select(Class, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.abundance.abcls.txt", sep = "\t",
quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Family") %>% psmelt() %>%
select(Family, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.abundance.abfam.txt", sep = "\t",
quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Genus") %>% psmelt() %>%
select(Genus, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.abundance.abgen.txt", sep = "\t",
quote = F, row.names = F, col.names = T)
#'
#' ## Create relative abundance tables
#'
#' Use the `transform_sample_counts` function to transforms the sample counts of a taxa abundance matrix according to the provided function, in the case the fractions of the whole sum
#'
## ----output-rel-abund-tables, warning = FALSE, cache = TRUE-------------------
write.table(ps1 %>% transform_sample_counts(function(x) {x/sum(x)} ) %>% psmelt() %>%
arrange(OTU) %>% rename(ASV = OTU) %>%
select(ASV, Kingdom, Phylum, Class, Order, Family, Genus, Species, Sample_ID, Abundance) %>%
spread(Sample_ID, Abundance),
file = "outfiles/expr.relative_abundance.all.txt",
sep = "\t", quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Phylum") %>%
transform_sample_counts(function(x) {x/sum(x)} ) %>% psmelt() %>%
select(Phylum, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.relative_abundance.abphy.txt",
sep = "\t", quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Class") %>%
transform_sample_counts(function(x) {x/sum(x)} ) %>% psmelt() %>%
select(Class, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.relative_abundance.abcls.txt",
sep = "\t", quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Family") %>%
transform_sample_counts(function(x) {x/sum(x)} ) %>% psmelt() %>%
select(Family, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.relative_abundance.abfam.txt",
sep = "\t", quote = F, row.names = F, col.names = T)
write.table(ps1 %>% tax_glom(taxrank = "Genus") %>%
transform_sample_counts(function(x) {x/sum(x)} ) %>% psmelt() %>%
select(Genus, Sample_ID, Abundance) %>% spread(Sample_ID, Abundance),
file = "outfiles/expr.relative_abundance.abgen.txt",
sep = "\t", quote = F, row.names = F, col.names = T)
#'
#' # Plot abundance
#'
## ----prepare-plot-bar---------------------------------------------------------
# Transform to proportions (relative abundances)
ps1.rp = transform_sample_counts(ps1, function(OTU) OTU/sum(OTU))
# Top N taxa
N = 200
topN = names(sort(taxa_sums(ps1), decreasing=TRUE))[1:N]
ps1.topN = transform_sample_counts(ps1, function(OTU) OTU/sum(OTU))
ps1.topN = prune_taxa(topN, ps1.topN)
ps1.topN
#'
#' ## At Phylum level
#'
## ----plot-bar-phylum, cache = TRUE--------------------------------------------
# All taxa
ptaxa1 = plot_bar(ps1.rp, x = "Sample_ID", fill = "Phylum",
title = paste(ntaxa(ps1.rp), "Taxa (Phylum)")) +
geom_bar(stat = "identity", size = 0.1, color = "black") +
facet_wrap(~Group2, scales = "free_x", nrow = 1) + guides(fill = guide_legend(ncol = 1)) +
scale_y_continuous(breaks = seq(0, 1, 0.1)) +
theme(legend.title = element_text(size = 8), legend.text = element_text(size = 7),
axis.text.x = element_text(size = 5, angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 12)) + xlab("Sample") + ylab("Relative abundance")
# Top 200 taxa
ptaxa2 = plot_bar(ps1.topN, x = "Sample_ID", fill = "Phylum",
title = paste("Top",N, "Taxa (Phylum)")) +
geom_bar(stat = "identity", size = 0.1, color = "black") +
facet_wrap(~Group2, scales = "free_x", nrow = 1) + guides(fill = guide_legend(ncol = 1)) +
scale_y_continuous(breaks = seq(0, 1, 0.1)) +
theme(legend.title = element_text(size = 8), legend.text = element_text(size = 7),
axis.text.x = element_text(size = 5, angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 12)) + xlab("Sample") + ylab("Relative Abundance")
png("images/plot_bar_phylum.png", width = 10, height = 8, units = "in", res = 300)
gridExtra::grid.arrange(ptaxa1, ptaxa2, nrow = 2)
invisible(dev.off())
#'
#'
#' ## At Class level
#'
## ----plot-bar-class, cache = TRUE---------------------------------------------
ptaxa3 = plot_bar(ps1.rp, x = "Sample_ID", fill = "Class",
title = paste(ntaxa(ps1.rp), "Taxa (Class)")) +
geom_bar(stat = "identity", size = 0.1, color = "black") +
facet_wrap(~Group2, scales = "free_x", nrow = 1) + guides(fill = guide_legend(ncol = 1)) +
scale_y_continuous(breaks = seq(0, 1, 0.1)) +
theme(legend.title = element_text(size = 8), legend.text = element_text(size = 7),
axis.text.x = element_text(size = 5, angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 12)) + xlab("Sample") + ylab("Relative abundance")
ptaxa4 = plot_bar(ps1.topN, x = "Sample_ID", fill = "Class",
title = paste("Top",N, "Taxa (Class)")) +
geom_bar(stat = "identity", size = 0.1, color = "black") +
facet_wrap(~Group2, scales = "free_x", nrow = 1) + guides(fill = guide_legend(ncol = 1)) +
scale_y_continuous(breaks = seq(0, 1, 0.1)) +
theme(legend.title = element_text(size = 8), legend.text = element_text(size = 7),
axis.text.x = element_text(size = 5, angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 12)) + xlab("Sample") + ylab("Relative Abundance")
png("images/plot_bar_class.png", width = 10, height = 8, units = "in", res = 300)
gridExtra::grid.arrange(ptaxa3, ptaxa4, nrow = 2)
invisible(dev.off())
#'
#'
#' ## At Family level
#'
## ----plot-bar-family, cache = TRUE--------------------------------------------
ptaxa5 = plot_bar(ps1.topN, x = "Sample_ID", fill = "Family",
title = paste("Top",N, "Taxa (Family)")) +
geom_bar(stat = "identity", size = 0.1, color = "black") +
facet_wrap(~Group2, scales = "free_x", nrow = 1) + guides(fill = guide_legend(ncol = 1)) +
scale_y_continuous(breaks = seq(0, 1, 0.1)) +
theme(legend.title = element_text(size = 8), legend.text = element_text(size = 7),
axis.text.x = element_text(size = 5, angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 12)) + xlab("Sample") + ylab("Relative Abundance")
png("images/plot_bar_family.png", width = 10, height = 8, units = "in", res = 300)
ptaxa5
invisible(dev.off())
#'
#'
#' ## At Genus level
#'
## ----plot-bar-genus, cache = TRUE---------------------------------------------
ptaxa6 = plot_bar(ps1.topN, x = "Sample_ID", fill = "Genus",
title = paste("Top",N, "Taxa (Genus)")) +
geom_bar(stat = "identity", size = 0.1, color = "black") +
facet_wrap(~Group2, scales = "free_x", nrow = 1) + guides(fill = guide_legend(ncol = 2)) +
scale_y_continuous(breaks = seq(0, 1, 0.1)) +
theme(legend.title = element_text(size = 8), legend.text = element_text(size = 7),
axis.text.x = element_text(size = 5, angle = 90, vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 12)) + xlab("Sample") + ylab("Relative Abundance")
png("images/plot_bar_genus.png", width = 10, height = 8, units = "in", res = 300)
ptaxa6
invisible(dev.off())
#'
#'
#' # Alpha diversity
#'
#' Explore alpha diversity using the `plot_richness` function
#'
## ----plot_richness------------------------------------------------------------
# Select alpha-diversity measures
divIdx = c("Observed", "Chao1", "Shannon", "Simpson")
png("images/plot_richness.png", width = 6, height = 5, units = "in", res = 300)
plot_richness(ps1, x = "Group2", measures = divIdx, color = "Group2", nrow = 1) +
geom_point(size = 0.8) + theme_bw() +
theme(legend.position = "none",
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
labs(x = "Group", y = "Alpha Diversity Measure")
invisible(dev.off())
#'
#'
#' Create a long-format data.frame and plot with `ggplot` function
#'
## ----plot_richness_boxplot----------------------------------------------------
ad = estimate_richness(ps1, measures = divIdx)
ad = merge(data.frame(sample_data(ps1)), ad, by = "row.names")
ad = ad %>% select(Sample_ID, Group2, all_of(divIdx)) %>%
gather(key = "alpha", value = "measure", -c(Sample_ID, Group2))
png("images/plot_richness_boxplot.png", width = 6, height = 5, units = "in", res = 300)
ggplot(ad, aes(Group2, measure, color = Group2)) +
geom_boxplot(outlier.shape = NA, size = 0.8, width = 0.8) +
geom_quasirandom(size = 0.8, color = "black") + theme_bw() +
facet_wrap(~ alpha, scales = "free_y", nrow = 1) +
theme(legend.position = "none",
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
labs(x = "Group", y = "Alpha Diversity Measure")
invisible(dev.off())
#'
#'
#' # Beta diversity
#'
#' Perform various flavors of unifrac measurements using the `GUniFrac` package
#'
## ----calculate-unifracs, cache = TRUE-----------------------------------------
unifracs = GUniFrac::GUniFrac(otu_table(ps1), phy_tree(ps1), alpha = c(0, 0.5, 1))$unifracs
#'
#' Perform ordination
#'
## ----ordinate, cache = TRUE---------------------------------------------------
# Calculate geometric means prior to estimate size factors
gm_mean = function(x, na.rm = TRUE){
exp(sum(log(x[x > 0]), na.rm = na.rm) / length(x))
}
# Perform variance stabilizing transformation
ps1.vsd = ps1
dds = phyloseq_to_deseq2(ps1, ~ Group2)
geoMeans = apply(counts(dds), 1, gm_mean)
dds = estimateSizeFactors(dds, geoMeans = geoMeans)
dds = estimateDispersions(dds)
abund.vsd = getVarianceStabilizedData(dds)
abund.vsd[abund.vsd < 0] = 0 # set negative values to 0
otu_table(ps1.vsd) = otu_table(abund.vsd, taxa_are_rows = TRUE)
# Create distance objects
dist_un = as.dist(unifracs[, , "d_UW"]) # Unweighted UniFrac
attr(dist_un, "method") = "Unweighted UniFrac"
dist_wu = as.dist(unifracs[, , "d_1"]) # Weighted UniFrac
attr(dist_wu, "method") = "Weighted UniFrac"
dist_vu = as.dist(unifracs[, , "d_VAW"]) # Variance-adjusted-weighted UniFrac
attr(dist_vu, "method") = "Variance-adjusted-weighted UniFrac"
dist_gu = as.dist(unifracs[, , "d_0.5"]) # GUniFrac with alpha 0.5
attr(dist_gu, "method") = "GUniFrac with alpha 0.5"
dist_bc = phyloseq::distance(ps1.vsd, "bray") # Bray-Curtis
# Perform ordination
ord_un = ordinate(ps1, method = "PCoA", distance = dist_un)
ord_wu = ordinate(ps1, method = "PCoA", distance = dist_wu)
ord_vu = ordinate(ps1, method = "PCoA", distance = dist_vu)
ord_gu = ordinate(ps1, method = "PCoA", distance = dist_gu)
set.seed(12345)
ord_bc = ordinate(ps1, method = "NMDS", distance = dist_bc)
#'
#' Output to PDF
#'
## ----plot-unifracs, cache = TRUE----------------------------------------------
pdf("images/plot_ordination.pdf", width = 6, height = 5, pointsize = 12)
plot_ordination(ps1, ord_un, type = "samples", color = "Group2",
title = "PCoA on unweighted UniFrac") +
theme_bw() + coord_fixed(ratio = 1) +
stat_ellipse(aes(group = Group2), type = "t", size = 0.5, linetype = "dashed")
plot_ordination(ps1, ord_wu, type = "samples", color = "Group2",
title = "PCoA on weighted UniFrac") +
theme_bw() + coord_fixed(ratio = 1) +
stat_ellipse(aes(group = Group2), type = "t", size = 0.5, linetype = "dashed")
plot_ordination(ps1, ord_vu, type = "samples", color = "Group2",
title = "PCoA on Variance adjusted weighted UniFrac") +
theme_bw() + coord_fixed(ratio = 1) +
stat_ellipse(aes(group = Group2), type = "t", size = 0.5, linetype = "dashed")
plot_ordination(ps1, ord_gu, type = "samples", color = "Group2",
title = "PCoA on GUniFrac with alpha 0.5") +
theme_bw() + coord_fixed(ratio = 1) +
stat_ellipse(aes(group = Group2), type = "t", size = 0.5, linetype = "dashed")
plot_ordination(ps1, ord_bc, type = "samples", color = "Group2",
title = "NMDS on Bray-Curtis distance (VST)") +
theme_bw() + coord_fixed(ratio = 1) +
stat_ellipse(aes(group = Group2), type = "t", size = 0.5, linetype = "dashed")
invisible(dev.off())
#'
#' Example: PCoA on weighted UniFrac
#'
## ----plot-weighted-unifrac, echo = FALSE, warning = FALSE, fig.width = 6, fig.height = 5, fig.align = "center", dpi = 100, cache = TRUE----
plot_ordination(ps1, ord_vu, type = "samples", color = "Group2",
title = "PCoA on weighted UniFrac") + theme_bw() + coord_fixed(ratio = 1) +
stat_ellipse(aes(group = Group2), type = "t", size = 0.5, linetype = "dashed")
#'
#' # Multivariate analyses
#'
#' ## PERMANOVA
#'
#' Permutational multivariate analysis of variance (PERMANOVA) test for differences between independent groups using the `adonis` function
#'
## ----adonis-------------------------------------------------------------------
set.seed(12345)
adonis(dist_un ~ Group2, data.frame(sample_data(ps1)), permutations = 1000)
set.seed(12345)
adonis(dist_wu ~ Group2, data.frame(sample_data(ps1)), permutations = 1000)
set.seed(12345)
adonis(dist_vu ~ Group2, data.frame(sample_data(ps1)), permutations = 1000)
set.seed(12345)
adonis(dist_gu ~ Group2, data.frame(sample_data(ps1)), permutations = 1000)
set.seed(12345)
adonis(dist_bc ~ Group2, data.frame(sample_data(ps1)), permutations = 1000)
#'
#' ## Multivariate dispersion
#'
#' Test for homogeneity condition among groups using the `betadisper` function
#'
## ----betadisper---------------------------------------------------------------
disp1 = betadisper(dist_un, group = data.frame(sample_data(ps1))$Group2)
set.seed(12345)
permutest(disp1, permutations = 1000)
disp2 = betadisper(dist_wu, group = data.frame(sample_data(ps1))$Group2)
set.seed(12345)
permutest(disp2, permutations = 1000)
disp3 = betadisper(dist_vu, group = data.frame(sample_data(ps1))$Group2)
set.seed(12345)
permutest(disp3, permutations = 1000)
disp4 = betadisper(dist_gu, group = data.frame(sample_data(ps1))$Group2)
set.seed(12345)
permutest(disp4, permutations = 1000)
disp5 = betadisper(dist_bc, group = data.frame(sample_data(ps1))$Group2)
set.seed(12345)
permutest(disp5, permutations = 1000)
#'
#' Example: Dispersion of unweighted UniFrac
#'
## ----plot-dispersion, fig.width = 6, fig.height = 6, fig.align = "center", dpi = 100----
plot(disp3, hull = FALSE, ellipse = TRUE)
#'
#' # Save current workspace
#'
## ----save-image---------------------------------------------------------------
save.image(file = "2_phyloseq_tutorial.RData")
#'
#' # Session information
#'
## ----session-info-------------------------------------------------------------
sessionInfo()