forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_12-01.cpp
64 lines (47 loc) · 1.91 KB
/
example_12-01.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// Example 12-1. Using cv::dft() and cv::idft() to accelerate
// the computation of convolutions
#include <iostream>
#include <opencv2/opencv.hpp>
using std::cout;
using std::endl;
int main(int argc, char** argv) {
if (argc != 2) {
cout << "\nExample 12-1. Using cv::dft() and cv::idft() to accelerate the"
<< "\n computation of convolutions"
<< "\nFourier Transform\nUsage: "
<< argv[0] << " <path/imagename>\n" << endl;
return -1;
}
cv::Mat A = cv::imread(argv[1], 0);
if (A.empty()) {
cout << "Cannot load " << argv[1] << endl;
return -1;
}
cv::Size patchSize(100, 100);
cv::Point topleft(A.cols / 2, A.rows /2);
cv::Rect roi(topleft.x, topleft.y, patchSize.width, patchSize.height);
cv::Mat B = A(roi);
int dft_M = cv::getOptimalDFTSize(A.rows + B.rows - 1);
int dft_N = cv::getOptimalDFTSize(A.cols + B.cols - 1);
cv::Mat dft_A = cv::Mat::zeros(dft_M, dft_N, CV_32F);
cv::Mat dft_B = cv::Mat::zeros(dft_M, dft_N, CV_32F);
cv::Mat dft_A_part = dft_A(cv::Rect(0, 0, A.cols, A.rows));
cv::Mat dft_B_part = dft_B(cv::Rect(0, 0, B.cols, B.rows));
A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);
B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);
cv::dft(dft_A, dft_A, 0, A.rows);
cv::dft(dft_B, dft_B, 0, B.rows);
// set the last parameter to false to compute convolution instead of correlation
//
cv::mulSpectrums(dft_A, dft_B, dft_A, 0, true);
cv::idft(dft_A, dft_A, cv::DFT_SCALE, A.rows + B.rows - 1);
cv::Mat corr = dft_A(cv::Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
cv::normalize(corr, corr, 0, 1, cv::NORM_MINMAX, corr.type());
cv::pow(corr, 3.0, corr);
B ^= cv::Scalar::all(255);
cv::imshow("Image", A);
cv::imshow("ROI", B);
cv::imshow("Correlation", corr);
cv::waitKey();
return 0;
}