We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
attentionもconvolutionも使わないMLPのみのモデルで,SOTAモデルに匹敵する精度を達成. またスループットが高いこともわかった.
パッチ化された画像に対して,空間方向およびチャネル方向にMLPを適用するネットワーク構造. 実装を見るのが一番わかりやすい.
こちらより引用.
from torch import nn from functools import partial from einops.layers.torch import Rearrange, Reduce class PreNormResidual(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x): return self.fn(self.norm(x)) + x def FeedForward(dim, expansion_factor = 4, dropout = 0., dense = nn.Linear): return nn.Sequential( dense(dim, dim * expansion_factor), nn.GELU(), nn.Dropout(dropout), dense(dim * expansion_factor, dim), nn.Dropout(dropout) ) def MLPMixer(*, image_size, channels, patch_size, dim, depth, num_classes, expansion_factor = 4, dropout = 0.): assert (image_size % patch_size) == 0, 'image must be divisible by patch size' num_patches = (image_size // patch_size) ** 2 chan_first, chan_last = partial(nn.Conv1d, kernel_size = 1), nn.Linear return nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.Linear((patch_size ** 2) * channels, dim), *[nn.Sequential( PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)), PreNormResidual(dim, FeedForward(dim, expansion_factor, dropout, chan_last)) ) for _ in range(depth)], nn.LayerNorm(dim), Reduce('b n c -> b c', 'mean'), nn.Linear(dim, num_classes) )
The text was updated successfully, but these errors were encountered:
No branches or pull requests
概要
attentionもconvolutionも使わないMLPのみのモデルで,SOTAモデルに匹敵する精度を達成.
またスループットが高いこともわかった.
提案手法
パッチ化された画像に対して,空間方向およびチャネル方向にMLPを適用するネットワーク構造.
実装を見るのが一番わかりやすい.
こちらより引用.
実験
Comment
Reference
link
The text was updated successfully, but these errors were encountered: