forked from namin/dafny-sandbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DependentTypes.dfy
933 lines (828 loc) · 35.3 KB
/
DependentTypes.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
// A solution to the CS2520R Fall 2024 assignment
// https://plti.metareflection.club/assignments.html
// on implementing a given semantic model of dependent types,
// designed to be (mostly) syntax-directed
// and to support (tediously) expressing and type-checking
// commutativity of addition.
// Disclaimer: ChatGPT helped develop this code,
// over a few messy sessions (which I can dig up upon request).
// HOWTO:
// Verify and run this code with:
// dafny /compile:3 /main:tests /out:my_output DependentTypes.dfy
datatype Expr =
Var(string) // Variable reference
| Type // The type of types (star)
| Pi(string, Expr, Expr) // Dependent function types (Pi types)
| Lambda(string, Expr, Expr) // Function introduction (lambda abstraction)
| App(Expr, Expr) // Function elimination (application)
| Nat // The natural number type
| Zero // Natural number 0
| Succ(Expr) // Successor of a natural number
| ElimNat(Expr, Expr, Expr, Expr) // Natural number elimination
datatype option<A> = None | Some(get: A)
// Function to compute free variables in an expression
function freeVars(e: Expr): set<string>
{
match e
case Var(x) => {x}
case Type => {}
case Pi(x, t1, t2) => freeVars(t1) + (freeVars(t2) - {x})
case Lambda(x, t, body) => freeVars(t) + (freeVars(body) - {x})
case App(e1, e2) => freeVars(e1) + freeVars(e2)
case Nat => {}
case Zero => {}
case Succ(n) => freeVars(n)
case ElimNat(e1, e2, e3, e4) => freeVars(e1) + freeVars(e2) + freeVars(e3) + freeVars(e4)
}
function freshVarIter(existingVars: set<string>, base: string, fuel: nat): string
decreases fuel
{
if fuel == 0 then
base + "_fallback" // Return a fallback if fuel runs out
else if base in existingVars then
freshVarIter(existingVars, base + "'", fuel - 1)
else
base
}
function freshVar(existingVars: set<string>, base: string): string
{
freshVarIter(existingVars, base, 1000)
}
function renameVar(e: Expr, oldName: string, newName: string): Expr
{
match e
case Var(y) =>
if y == oldName then Var(newName) else e
case Type => e
case Pi(x, t1, t2) =>
if x == oldName then
Pi(x, renameVar(t1, oldName, newName), t2)
else
Pi(x, renameVar(t1, oldName, newName), renameVar(t2, oldName, newName))
case Lambda(x, t, body) =>
if x == oldName then
Lambda(x, renameVar(t, oldName, newName), body)
else
Lambda(x, renameVar(t, oldName, newName), renameVar(body, oldName, newName))
case App(e1, e2) =>
App(renameVar(e1, oldName, newName), renameVar(e2, oldName, newName))
case Nat => e
case Zero => e
case Succ(n) => Succ(renameVar(n, oldName, newName))
case ElimNat(e1, e2, e3, e4) =>
ElimNat(renameVar(e1, oldName, newName), renameVar(e2, oldName, newName), renameVar(e3, oldName, newName), renameVar(e4, oldName, newName))
}
lemma renamingPreservesSize(e: Expr, oldName: string, newName: string)
ensures size(renameVar(e, oldName, newName)) == size(e)
decreases size(e)
{
match e
case Var(_) => {}
case Type => {}
case Pi(_, t1, t2) =>
renamingPreservesSize(t1, oldName, newName);
renamingPreservesSize(t2, oldName, newName);
case Lambda(_, t, body) =>
renamingPreservesSize(t, oldName, newName);
renamingPreservesSize(body, oldName, newName);
case App(e1, e2) =>
renamingPreservesSize(e1, oldName, newName);
renamingPreservesSize(e2, oldName, newName);
case Nat => {}
case Zero => {}
case Succ(n) =>
renamingPreservesSize(n, oldName, newName);
case ElimNat(e1, e2, e3, e4) =>
renamingPreservesSize(e1, oldName, newName);
renamingPreservesSize(e2, oldName, newName);
renamingPreservesSize(e3, oldName, newName);
renamingPreservesSize(e4, oldName, newName);
}
method subst(e1: Expr, x: string, e2: Expr) returns (res: Expr)
decreases size(e1)
{
match e1
case Var(y) =>
if y == x {
res := e2;
} else {
res := e1;
}
case Type =>
res := e1;
case Pi(y, t1, t2) =>
if x == y {
res := e1;
} else if y in freeVars(e2) {
var fresh_y := freshVar(freeVars(t1) + freeVars(t2) + freeVars(e2), y);
// Prove renaming doesn't change size
renamingPreservesSize(t2, y, fresh_y);
var subst_t1 := subst(t1, x, e2);
var subst_t2 := subst(renameVar(t2, y, fresh_y), x, e2);
res := Pi(fresh_y, subst_t1, subst_t2);
} else {
var subst_t1 := subst(t1, x, e2);
var subst_t2 := subst(t2, x, e2);
res := Pi(y, subst_t1, subst_t2);
}
case Lambda(y, t, body) =>
if x == y {
res := e1;
} else if y in freeVars(e2) {
var fresh_y := freshVar(freeVars(t) + freeVars(body) + freeVars(e2), y);
// Prove renaming doesn't change size
renamingPreservesSize(body, y, fresh_y);
var subst_t := subst(t, x, e2);
var subst_body := subst(renameVar(body, y, fresh_y), x, e2);
res := Lambda(fresh_y, subst_t, subst_body);
} else {
var subst_t := subst(t, x, e2);
var subst_body := subst(body, x, e2);
res := Lambda(y, subst_t, subst_body);
}
case App(e3, e4) =>
var subst_e3 := subst(e3, x, e2);
var subst_e4 := subst(e4, x, e2);
res := App(subst_e3, subst_e4);
case Nat =>
res := e1;
case Zero =>
res := e1;
case Succ(n) =>
var subst_n := subst(n, x, e2);
res := Succ(subst_n);
case ElimNat(e3, e4, e5, e6) =>
var subst_e3 := subst(e3, x, e2);
var subst_e4 := subst(e4, x, e2);
var subst_e5 := subst(e5, x, e2);
var subst_e6 := subst(e6, x, e2);
res := ElimNat(subst_e3, subst_e4, subst_e5, subst_e6);
}
// Single-step reduction returning an option
method reduce(e: Expr) returns (res: option<Expr>)
decreases size(e)
{
match e
case App(Lambda(x, _, body), e2) =>
var subst_body := subst(body, x, e2);
res := Some(subst_body); // Beta reduction
// Reduction for ElimNat at Zero and Succ
case ElimNat(_, e1, _, Zero) =>
res := Some(e1);
case ElimNat(m, e1, e2, Succ(n)) =>
var elim := ElimNat(m, e1, e2, n);
res := Some(App(App(e2, n), elim));
// Reduction inside Pi-types (domain or codomain)
case Pi(x, t1, t2) => {
var reduce_t1 := reduce(t1);
match reduce_t1
case Some(t1_r) =>
res := Some(Pi(x, t1_r, t2));
case None =>
var reduce_t2 := reduce(t2);
match reduce_t2
case Some(t2_r) =>
res := Some(Pi(x, t1, t2_r));
case None =>
res := None;
}
// Reduction inside Lambda (type or body)
case Lambda(x, t, body) => {
var reduce_t := reduce(t);
match reduce_t
case Some(t_r) =>
res := Some(Lambda(x, t_r, body));
case None =>
var reduce_body := reduce(body);
match reduce_body
case Some(body_r) =>
res := Some(Lambda(x, t, body_r));
case None =>
res := None;
}
// Reduction inside applications
case App(e1, e2) => {
var reduce_e1 := reduce(e1);
match reduce_e1
case Some(e1_r) =>
res := Some(App(e1_r, e2));
case None =>
var reduce_e2 := reduce(e2);
match reduce_e2
case Some(e2_r) =>
res := Some(App(e1, e2_r));
case None =>
res := None;
}
// Reduction inside ElimNat
case ElimNat(e1, e2, e3, e4) => {
var reduce_e1 := reduce(e1);
match reduce_e1
case Some(e1_r) =>
res := Some(ElimNat(e1_r, e2, e3, e4));
case None =>
var reduce_e2 := reduce(e2);
match reduce_e2
case Some(e2_r) =>
res := Some(ElimNat(e1, e2_r, e3, e4));
case None =>
var reduce_e3 := reduce(e3);
match reduce_e3
case Some(e3_r) =>
res := Some(ElimNat(e1, e2, e3_r, e4));
case None =>
var reduce_e4 := reduce(e4);
match reduce_e4
case Some(e4_r) =>
res := Some(ElimNat(e1, e2, e3, e4_r));
case None =>
res := None;
}
// Reduction inside Succ
case Succ(n) => {
var reduce_n := reduce(n);
match reduce_n
case Some(n_r) =>
res := Some(Succ(n_r));
case None =>
res := None;
}
// No reduction possible
case _ =>
res := None;
}
// Multi-step reduction with fuel limit
method multiStepReduce(e: Expr, fuel: nat) returns (res: Expr)
decreases fuel
{
if fuel == 0 {
print "Warning: Fuel exhausted!\n";
res := e;
} else {
var reduce_res := reduce(e);
match reduce_res
case None =>
res := e;
case Some(e_r) =>
res := multiStepReduce(e_r, fuel - 1);
}
}
// Function to compute the size of an expression (number of nodes in the AST)
function size(e: Expr): nat
{
match e
case Var(_) => 1
case Type => 1
case Pi(_, t1, t2) => 1 + size(t1) + size(t2)
case Lambda(_, t, body) => 1 + size(t) + size(body)
case App(e1, e2) => 1 + size(e1) + size(e2)
case Nat => 1
case Zero => 1
case Succ(n) => 1 + size(n)
case ElimNat(e1, e2, e3, e4) => 1 + size(e1) + size(e2) + size(e3) + size(e4)
}
// Helper method to canonicalize bound names in both expressions simultaneously
method freshCanonicalizeSimulataneously(e1: Expr, e2: Expr, existingVars: set<string>) returns (norm1: Expr, norm2: Expr)
decreases size(e1) + size(e2)
{
match (e1, e2)
case (Var(x1), Var(x2)) =>
// If both are free variables, check if they're the same
norm1, norm2 := e1, e2;
case (Type, Type) =>
norm1, norm2 := e1, e2;
case (Pi(x1, t1a, t1b), Pi(x2, t2a, t2b)) =>
var freshX := freshVar(existingVars + {x1} + {x2} + freeVars(t1a) + freeVars(t2a), x1);
var norm_t1a, norm_t2a := freshCanonicalizeSimulataneously(t1a, t2a, existingVars);
renamingPreservesSize(t1b, x1, freshX);
renamingPreservesSize(t2b, x2, freshX);
var norm_t1b, norm_t2b := freshCanonicalizeSimulataneously(renameVar(t1b, x1, freshX), renameVar(t2b, x2, freshX), existingVars + {freshX});
norm1 := Pi(freshX, norm_t1a, norm_t1b);
norm2 := Pi(freshX, norm_t2a, norm_t2b);
case (Lambda(x1, t1a, t1b), Lambda(x2, t2a, t2b)) =>
var freshX := freshVar(existingVars + {x1} + {x2} + freeVars(t1a) + freeVars(t2a), x1);
var norm_t1a, norm_t2a := freshCanonicalizeSimulataneously(t1a, t2a, existingVars);
renamingPreservesSize(t1b, x1, freshX);
renamingPreservesSize(t2b, x2, freshX);
var norm_t1b, norm_t2b := freshCanonicalizeSimulataneously(renameVar(t1b, x1, freshX), renameVar(t2b, x2, freshX), existingVars + {freshX});
norm1 := Lambda(freshX, norm_t1a, norm_t1b);
norm2 := Lambda(freshX, norm_t2a, norm_t2b);
case (App(e1a, e1b), App(e2a, e2b)) =>
var norm_e1a, norm_e2a := freshCanonicalizeSimulataneously(e1a, e2a, existingVars);
var norm_e1b, norm_e2b := freshCanonicalizeSimulataneously(e1b, e2b, existingVars);
norm1 := App(norm_e1a, norm_e1b);
norm2 := App(norm_e2a, norm_e2b);
case (Nat, Nat) =>
norm1, norm2 := e1, e2;
case (Zero, Zero) =>
norm1, norm2 := e1, e2;
case (Succ(n1), Succ(n2)) =>
var norm_n1, norm_n2 := freshCanonicalizeSimulataneously(n1, n2, existingVars);
norm1 := Succ(norm_n1);
norm2 := Succ(norm_n2);
case (ElimNat(e1a, e1b, e1c, e1d), ElimNat(e2a, e2b, e2c, e2d)) =>
var norm_e1a, norm_e2a := freshCanonicalizeSimulataneously(e1a, e2a, existingVars);
var norm_e1b, norm_e2b := freshCanonicalizeSimulataneously(e1b, e2b, existingVars);
var norm_e1c, norm_e2c := freshCanonicalizeSimulataneously(e1c, e2c, existingVars);
var norm_e1d, norm_e2d := freshCanonicalizeSimulataneously(e1d, e2d, existingVars);
norm1 := ElimNat(norm_e1a, norm_e1b, norm_e1c, norm_e1d);
norm2 := ElimNat(norm_e2a, norm_e2b, norm_e2c, norm_e2d);
case (_, _) =>
norm1, norm2 := e1, e2; // Default case, in case expressions differ
}
method alphaEquivalent(t1: Expr, t2: Expr) returns (res: bool)
decreases size(t1) + size(t2)
{
var combinedFreeVars := freeVars(t1) + freeVars(t2);
var canonicalT1, canonicalT2 := freshCanonicalizeSimulataneously(t1, t2, combinedFreeVars);
res := canonicalT1 == canonicalT2;
}
// Normalization as multi-step reduction with an arbitrary large fuel
method normalize(e: Expr) returns (res: Expr)
{
res := multiStepReduce(e, 10000);
}
// Compare types, normalized and up to alpha-equivalence.
method equalTypes(t1: Expr, t2: Expr) returns (res: bool)
{
var norm_t1 := normalize(t1);
var norm_t2 := normalize(t2);
res := alphaEquivalent(norm_t1, norm_t2);
}
// Infer the type of an expression, syntax-directed.
method inferType(Gamma: map<string, Expr>, e: Expr) returns (res: option<Expr>)
decreases e
{
match e
case Var(x) =>
if x in Gamma {
res := Some(Gamma[x]);
} else {
res := None;
}
case Type =>
res := Some(Type);
case Pi(x, t1, t2) => {
var ot1 := inferType(Gamma, t1);
match ot1
case Some(t1_type) =>
var eq_t1 := equalTypes(t1_type, Type);
if eq_t1 {
var nt1 := t1;//normalize(t1);
var Gamma_extended := Gamma[x := nt1];
var ot2 := inferType(Gamma_extended, t2);
match ot2
case Some(t2_type) =>
var eq_t2 := equalTypes(t2_type, Type);
if eq_t2 {
res := Some(Type);
} else {
res := None;
}
case None => res := None;
} else {
res := None;
}
case None => res := None;
}
case Lambda(x, t, body) => {
var ot := inferType(Gamma, t);
match ot
case Some(t_type) =>
var eq_t := equalTypes(t_type, Type);
if eq_t {
var nt := t;//normalize(t);
var Gamma_extended := Gamma[x := nt];
var obody := inferType(Gamma_extended, body);
match obody
case Some(body_type) =>
res := Some(Pi(x, t, body_type));
case None => res := None;
} else {
res := None;
}
case None => res := None;
}
case App(e1, e2) => {
var ot1 := inferType(Gamma, e1);
match ot1
case Some(t1) => {
var nt1 := normalize(t1);
match nt1
case Pi(x, t1, t2) => {
var ot2 := inferType(Gamma, e2);
match ot2
case Some(t1_actual) =>
var eq2 := equalTypes(t1, t1_actual);
if eq2 {
var subst_t2 := subst(t2, x, e2);
res := Some(subst_t2);
} else {
print "DEBUG (app case): arg doesn't have the expected type:\n";
print t1_actual;
print "\nvs\n";
print t1;
var nt1 := normalize(t1);
print nt1;
print "\n";
res := None;
}
case None => {
print "DEBUG (app case): arg doesn't have an inferred type.\n";
print e2;
print "\n";
print ot2;
print "\n";
res := None;
}
}
case _ => {
print "DEBUG (app case): fun has an inferred type, but it's not a Pi.\n";
print e1;
print "\n";
print nt1;
print "\n";
res := None;
}
}
case _ => {
print "DEBUG (app case): fun doesn't have an inferred type.\n";
print e1;
print "\n";
print ot1;
print "\n";
res := None;
}
}
case Nat =>
res := Some(Type);
case Zero =>
res := Some(Nat);
case Succ(n) => {
var on := inferType(Gamma, n);
match on
case Some(n_type) =>
var eq_nat := equalTypes(n_type, Nat);
if eq_nat {
res := Some(Nat);
} else {
res := None;
}
case None => res := None;
}
case ElimNat(m, e1, e2, e3) => {
var om := inferType(Gamma, m);
match om
case Some(m_type) =>
var eq_m := equalTypes(m_type, Pi("n", Nat, Type));
if eq_m {
var m_Zero := App(m, Zero);
var oe1 := inferType(Gamma, e1);
match oe1
case Some(e1_type) =>
var eq1 := equalTypes(e1_type, m_Zero);
if eq1 {
var oe2 := inferType(Gamma, e2);
match oe2
case Some(e2_type) =>
var eq_e2 := equalTypes(e2_type, Pi("n", Nat, Pi("IH", App(m, Var("n")), App(m, Succ(Var("n"))))));
if eq_e2 {
var oe3 := inferType(Gamma, e3);
match oe3
case Some(e3_type) =>
var eq_e3 := equalTypes(e3_type, Nat);
if eq_e3 {
res := Some(App(m, e3));
} else {
print "DEBUG: e3 doesn't have the expected type Nat:\n";
print e3_type;
print "\n";
res := None;
}
case None => {
print "DEBUG: e3 doesn't have an inferred type.\n";
res := None;
}
} else {
print "DEBUG: e2 doesn't have the expected type:\n";
print e2_type;
print "\n";
res := None;
}
case None => {
print "DEBUG: e2 doesn't have an inferred type.\n";
res := None;
}
} else {
print "DEBUG: e1 doesn't have the expected type:\n";
print e1_type;
print "\nvs\n";
var expected_e1_type := normalize(App(m, Zero));
print App(m, Zero);
print "\n";
print expected_e1_type;
print "\n";
res := None;
}
case None => {
print "DEBUG: e1 doesn't have an inferred type.\n";
res := None;
}
} else {
print "DEBUG: motive doesn't have the expected type:\n";
print m_type;
print "\n";
res := None;
}
case None => {
print "DEBUG: motive doesn't have an inferred type.\n";
res := None;
}
}
}
// Check that an expression has an expected type.
method checkType(Gamma: map<string, Expr>, e: Expr, expected: Expr) returns (res: bool)
{
var ot := inferType(Gamma, e);
match ot
case Some(inferred) => res := equalTypes(inferred, expected);
case None => res := false;
}
method print_res(s: string, o: option<Expr>)
{
print s;
print "\n";
match o {
case Some(e) =>
print e;
print "\nNormalized:\n";
var en := normalize(e);
print en;
case None =>
print "(none)";
}
print "\n";
}
method tests() {
var ok := true;
print "Alpha-equivalence sanity checks";
ok := alphaEquivalent(
Lambda("x", Type, Lambda("y", Type, Var("y"))),
Lambda("y", Type, Lambda("x", Type, Var("x")))
);
print ".";
expect ok;
ok := alphaEquivalent(
Lambda("x", Type, Lambda("y", Type, Var("x"))),
Lambda("y", Type, Lambda("x", Type, Var("y")))
);
print ".\n";
expect ok;
print "### Example 1: Polymorphic Identity Function\n";
// id = λ(A: Type). λ(x: A). x
var id := Lambda("A", Type, Lambda("x", Var("A"), Var("x")));
// id's type: (A: Type) -> A -> A
var id_type := Pi("A", Type, Pi("x", Var("A"), Var("A")));
// Type check identity function
var id_type_check := inferType(map[], id);
print_res("Polymorphic Identity Function Type Check:", id_type_check);
ok := checkType(map[], id, id_type);
expect ok;
print "\n### Example 2: Successor Function\n";
// succ = λ(n: Nat). Succ(n)
var succ_fn := Lambda("n", Nat, Succ(Var("n")));
// succ's type: Nat -> Nat
var succ_type := Pi("n", Nat, Nat);
// Type check the successor function
var succ_type_check := inferType(map[], succ_fn);
print_res("Successor Function Type Check:", succ_type_check);
ok := checkType(map[], succ_fn, succ_type);
expect ok;
print "\n### Example 3: Natural Number Elimination (add_one)\n";
// Add one to a number using elimNat
var add_one := Lambda("x", Nat, ElimNat(
Lambda("n", Nat, Nat), // Motive: Nat -> Nat
Zero, // Base case: 0 -> 0
Lambda("n", Nat, Lambda("IH", Nat, Succ(Var("IH")))), // Inductive case: n -> Succ(IH)
Var("x") // Target
));
// add_one's type: Nat -> Nat
var add_one_type := Pi("n", Nat, Nat);
// Type check the add_one function
var add_one_type_check := inferType(map[], add_one);
print_res("Add One Function Type Check:", add_one_type_check);
ok := checkType(map[], add_one, add_one_type);
expect ok;
print "\n### Example 4: Application of Identity Function\n";
var app_id := App(App(id, Nat), Zero);
// Type check the application
var app_id_type_check := inferType(map[], app_id);
print_res("Application of Identity Function Type Check:", app_id_type_check);
ok := checkType(map[], app_id, Nat);
expect ok;
// Normalize the expression
var app_id_normalized := normalize(app_id);
print "Application of Identity Function Normalized: ";
print app_id_normalized;
print "\n";
expect app_id_normalized == Zero;
print "\n### Example 5: Recursive Addition Function\n";
// Define the addition function using ElimNat
var add := Lambda("x", Nat, Lambda("y", Nat, ElimNat(
Lambda("n", Nat, Nat), // Motive: Nat -> Nat
Var("y"), // Base case: x + 0 = x
Lambda("n", Nat, Lambda("IH", Nat, Succ(Var("IH")))), // Inductive case: x + suc(n) = suc(x + n)
Var("x") // Target: perform the addition on x
)));
// add's type: Nat -> Nat -> Nat
var add_type := Pi("x", Nat, Pi("y", Nat, Nat));
// Type check the addition function
var add_type_check := inferType(map[], add);
print_res("Addition Function Type Check:", add_type_check);
ok := checkType(map[], add, add_type);
expect ok;
// Test addition (2 + 3) = 5
var two := Succ(Succ(Zero)); // 2
var three := Succ(Succ(Succ(Zero))); // 3
var add_two_three := App(App(add, two), three); // add(2, 3)
// Type check the addition application
var add_two_three_type_check := inferType(map[], add_two_three);
print_res("Addition of 2 and 3 Type Check:", add_two_three_type_check);
ok := checkType(map[], add_two_three, Nat);
expect ok;
// Normalize the addition expression (expect 5)
var add_two_three_normalized := normalize(add_two_three);
print "Addition of 2 and 3 Normalized: ";
print add_two_three_normalized;
print "\n";
expect add_two_three_normalized == Succ(Succ(Succ(Succ(Succ(Zero))))); // Expect 5
print "\n### Example 6: Plus commutative\n";
var Gamma := map[];
//Same : (A : ⋆) → A → A → ⋆
var Same_type := Pi("A", Type, Pi("a", Var("A"), Pi("b", Var("A"), Type)));
//Same A a b = (P : A → ⋆) → P a → P b
var Same := Lambda("A", Type, Lambda("a", Var("A"), Lambda("b", Var("A"),
Pi("P", Pi("_", Var("A"), Type), Pi("_", App(Var("P"), Var("a")), App(Var("P"), Var("b")))))));
var Same_type_check := inferType(Gamma, Same);
print_res("Same Type Check:", Same_type_check);
ok := checkType(Gamma, Same, Same_type);
expect ok;
//refl : (A : ⋆) → (x : A) → Same A x x
var refl_type := Pi("A", Type, Pi("x", Var("A"), App(App(App(Same, Var("A")), Var("x")), Var("x"))));
//refl = λ A x P z → z
var refl := Lambda("A", Type, Lambda("x", Var("A"),
Lambda("P", Pi("_", Var("A"), Type), Lambda("z", App(Var("P"), Var("x")), Var("z")))));
var refl_type_check := inferType(Gamma, refl);
print_res("refl Type Check:", refl_type_check);
ok := checkType(Gamma, refl, refl_type);
expect ok;
//sym : (A : ⋆) → (x y : A) → Same A x y → Same A y x
var sym_type := Pi("A", Type,
Pi("x", Var("A"), Pi("y", Var("A"),
Pi("z", App(App(App(Same, Var("A")), Var("x")), Var("y")),
App(App(App(Same, Var("A")), Var("y")), Var("x"))))));
//sym = λ A x y z P → z (λ z₁ → (x₁ : P z₁) → P x) (λ x₁ → x₁)
var sym := Lambda("A", Type, Lambda("x", Var("A"), Lambda("y", Var("A"),
Lambda("z", App(App(App(Same, Var("A")), Var("x")), Var("y")),
Lambda("P", Pi("_", Var("A"), Type),
App(App(Var("z"), Lambda("z1", Var("A"), Pi("x1", App(Var("P"), Var("z1")), App(Var("P"), Var("x"))))),
Lambda("x1", App(Var("P"), Var("x")), Var("x1"))))))));
var sym_type_check := inferType(Gamma, sym);
print_res("sym Type Check:", sym_type_check);
ok := checkType(Gamma, sym, sym_type);
expect ok;
//trans : (A : ⋆) → (x y z : A) → Same A x y → Same A y z → Same A x z
var trans_type := Pi("A", Type,
Pi("x", Var("A"),
Pi("y", Var("A"),
Pi("z", Var("A"),
Pi("pxy", App(App(App(Same, Var("A")), Var("x")), Var("y")),
Pi("pyz", App(App(App(Same, Var("A")), Var("y")), Var("z")),
App(App(App(Same, Var("A")), Var("x")), Var("z"))))))));
//trans A x y z pxy pyz P px = pyz P (pxy P px)
var trans := Lambda("A", Type,
Lambda("x", Var("A"),
Lambda("y", Var("A"),
Lambda("z", Var("A"),
Lambda("pxy", App(App(App(Same, Var("A")), Var("x")), Var("y")),
Lambda("pyz", App(App(App(Same, Var("A")), Var("y")), Var("z")),
Lambda("P", Pi("_", Var("A"), Type),
Lambda("px", App(Var("P"), Var("x")),
App(App(Var("pyz"), Var("P")), App(App(Var("pxy"), Var("P")), Var("px")))
))))))));
var trans_type_check := inferType(map[], trans);
print_res("trans Type Check:", trans_type_check);
ok := checkType(map[], trans, trans_type);
expect ok;
//same_under_suc : (x y : ℕ) → Same ℕ x y → Same ℕ (suc x) (suc y)
var same_under_suc_type := Pi("x", Nat,
Pi("y", Nat,
Pi("z", App(App(App(Same, Nat), Var("x")), Var("y")),
App(App(App(Same, Nat), Succ(Var("x"))), Succ(Var("y"))))));
//same_under_suc = λ x y z P → z (λ z₁ → P (suc z₁))
var same_under_suc := Lambda("x", Nat,
Lambda("y", Nat,
Lambda("z", App(App(App(Same, Nat), Var("x")), Var("y")),
Lambda("P", Pi("_", Nat, Type),
App(Var("z"), Lambda("z1", Nat, App(Var("P"), Succ(Var("z1")))))))));
var same_under_suc_type_check := inferType(map[], same_under_suc);
print_res("same_under_suc Type Check:", same_under_suc_type_check);
ok := checkType(map[], same_under_suc, same_under_suc_type);
expect ok;
//plus_right_zero : (x : ℕ) → Same ℕ x (x + 0)
var plus_right_zero_type := Pi("x", Nat, App(App(App(Same, Nat), Var("x")), App(App(add, Var("x")), Zero)));
//plus_right_zero x = natElim (λ x → Same ℕ x (x + 0))
// (λ P x → x)
// (λ n x₁ P → x₁ (λ z → P (suc z)))
// x
var motive := Lambda("n", Nat, App(App(App(Same, Nat), Var("n")), App(App(add, Var("n")), Zero)));
var motive_type_check := inferType(Gamma, motive);
print_res("Motive Type Check:", motive_type_check);
var base_case := Lambda("P", Pi("_", Nat, Type), Lambda("x", App(Var("P"), Zero), Var("x")));
var base_case_type_check := inferType(Gamma, base_case);
print_res("Base Case Type Check:", base_case_type_check);
var inductive_case := Lambda("n", Nat,
Lambda("IH", App(App(App(Same, Nat), Var("n")), App(App(add, Var("n")), Zero)),
Lambda("P", Pi("_", Nat, Type),
App(Var("IH"), Lambda("z", Nat, App(Var("P"), Succ(Var("z"))))))));
var inductive_case_type_check := inferType(Gamma, inductive_case);
print_res("Inductive Case Type Check:", inductive_case_type_check);
var plus_right_zero := Lambda("x", Nat,
ElimNat(motive, // Motive
base_case, // Base case
inductive_case, // Inductive case
Var("x")));
var plus_right_zero_type_check := inferType(Gamma, plus_right_zero);
print_res("plus_right_zero Type Check:", plus_right_zero_type_check);
ok := checkType(Gamma, plus_right_zero, plus_right_zero_type);
expect ok;
//plus_right_suc : (x y : ℕ) → Same ℕ (suc (x + y)) (x + suc y)
//plus_right_suc x y = natElim (λ x → Same ℕ (suc (x + y)) (x + suc y))
// (λ P z → z)
// (λ n z P → z (λ z₁ → P (suc z₁)))
var plus_right_suc_motive := Lambda("x", Nat,
App(App(App(Same, Nat), Succ(App(App(add, Var("x")), Var("y")))), App(App(add, Var("x")), Succ(Var("y")))));
var plus_right_suc_base_case := Lambda("P", Pi("_", Nat, Type), Lambda("z",
App(Var("P"), Succ(Var("y"))),
Var("z")));
var plus_right_suc_inductive_case := Lambda("n", Nat,
Lambda("IH", App(App(App(Same, Nat), Succ(App(App(add, Var("n")), Var("y")))), App(App(add, Var("n")), Succ(Var("y")))),
Lambda("P", Pi("_", Nat, Type),
App(Var("IH"), Lambda("z", Nat, App(Var("P"), Succ(Var("z"))))))));
var plus_right_suc := Lambda("x", Nat,
Lambda("y", Nat,
ElimNat(plus_right_suc_motive, plus_right_suc_base_case, plus_right_suc_inductive_case, Var("x"))));
var plus_right_suc_motive_type_check := inferType(map["y":=Nat], plus_right_suc_motive);
print_res("plus_right_suc Motive Type Check:", plus_right_suc_motive_type_check);
var plus_right_suc_base_case_type_check := inferType(map["y":=Nat], plus_right_suc_base_case);
print_res("plus_right_suc Base Case Type Check:", plus_right_suc_base_case_type_check);
var plus_right_suc_inductive_case_type_check := inferType(map["y":=Nat], plus_right_suc_inductive_case);
print_res("plus_right_suc Inductive Case Type Check:", plus_right_suc_inductive_case_type_check);
var plus_right_suc_type_check := inferType(map[], plus_right_suc);
print_res("plus_right_suc Type Check:", plus_right_suc_type_check);
//plus_comm : (x y : ℕ) → Same ℕ (x + y) (y + x)
var plus_comm_type := Pi("x", Nat, Pi("y", Nat, App(App(App(Same, Nat), App(App(add, Var("x")), Var("y"))), App(App(add, Var("y")), Var("x")))));
//plus_comm x y = natElim (λ x → Same ℕ (x + y) (y + x))
// (plus_right_zero y)
// (λ n p → trans ℕ (suc (n + y))
// (suc (y + n))
// (y + suc n)
// (same_under_suc (n + y) (y + n) p)
// (plus_right_suc y n))
/*
plus_comm : (x y : ℕ) → Same ℕ (x + y) (y + x)
plus_comm x y = natElim (λ (x : ℕ) → Same ℕ (x + y) (y + x))
(plus_right_zero y)
(λ (n : ℕ) (p : Same ℕ (n + y) (y + n)) →
trans ℕ (suc (n + y))
(suc (y + n))
(y + suc n)
(same_under_suc (n + y) (y + n) p)
(plus_right_suc y n))
x
*/
var plus_comm_motive := Lambda("x", Nat, App(App(App(Same, Nat), App(App(add, Var("x")), Var("y"))), App(App(add, Var("y")), Var("x"))));
var plus_comm_base_case := App(plus_right_zero, Var("y"));
var plus_comm_inductive_case := Lambda("n", Nat,
Lambda("p", App(App(App(Same, Nat), App(App(add, Var("n")), Var("y"))), App(App(add, Var("y")), Var("n"))),
App(App(App(App(App(App(
trans, Nat), // Type for trans function
Succ(App(App(add, Var("n")), Var("y")))), // first expression succ(n + y)
Succ(App(App(add, Var("y")), Var("n")))), // second expression succ(y + n)
App(App(add, Var("y")), Succ(Var("n")))), // third expression y + succ(n)
App(App(App(same_under_suc, App(App(add, Var("n")), Var("y"))), App(App(add, Var("y")), Var("n"))), Var("p"))),
App(App(plus_right_suc, Var("y")), Var("n")))));
var plus_comm := Lambda("x", Nat,
Lambda("y", Nat,
ElimNat(plus_comm_motive, plus_comm_base_case, plus_comm_inductive_case, Var("x"))));
var plus_comm_motive_type_check := inferType(map["y":=Nat], plus_comm_motive);
print_res("plus_comm Motive Type Check:", plus_comm_motive_type_check);
var plus_comm_base_case_type_check := inferType(map["y":=Nat], plus_comm_base_case);
print_res("plus_comm Base Case Type Check:", plus_comm_base_case_type_check);
var plus_comm_inductive_case_type_check := inferType(map["y":=Nat], plus_comm_inductive_case);
print_res("plus_comm Inductive Case Type Check:", plus_comm_inductive_case_type_check);
var plus_comm_type_check := inferType(map[], plus_comm);
print_res("plus_comm Type Check:", plus_comm_type_check);
ok := checkType(Gamma, plus_comm, plus_comm_type);
expect ok;
}