-
Notifications
You must be signed in to change notification settings - Fork 61
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
关于性能(耗时)问题 #7
Comments
您好,我不是原作者,但是我也在这个模型针对性能进行研究。我的理解是原作者在测试耗时中排除了加载模型和图片的时间,我在这行和这行前后加了 t0 = time.time()
# code
print((time.time() - t0)*1E3) 测量出的时间在30-60之间,和 27 FPS (~37 ms) 近似,所以和原作者的成果是基本符合的 Hello, I am not the original author, but I also happen to look into the performance of this model. My assumption is their measurement excluded the time to load the model and image, so I inserted the above code block before this line and after this line and got around 30 - 60 ms, which matches the 27 FPS result of the paper author. |
FSRCNN原始论文的运行时间均是C++版本的代码,因此使用pytorch调用cuda的方式测试的结果无法匹配FSRCNN原始论文结果。具体需要自行查看FSRCNN原始论文 |
经过我的实验,在windows环境中交叉编译caffe 1.0.0版本,然后参考FSRCNN官方caffe训练脚本编写deploy测试txt网络文件后,得到的实验结果和FSRCNN原始论文接近,因为实验环境都是原生C++。windows caffe 1.0.0版本编译过程请自行查看caffe github官方仓库 windows分支。 |
你好,感谢您提供相关代码。
在本仓库运行时,使用您提供的预训练模型,测试butterfly 2/3倍scale时,CPU耗时700ms,GPU(NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7)耗时400ms,
与论文中的结论27fps有差异,是什么原因呢
The text was updated successfully, but these errors were encountered: