-
Notifications
You must be signed in to change notification settings - Fork 0
/
models_vitdet.py
430 lines (375 loc) · 17.1 KB
/
models_vitdet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
import math
import os
import shutil
from functools import partial
import cv2
import numpy as np
import timm.models.vision_transformer
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.einops import rearrange
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import to_2tuple, trunc_normal_
from timm.models.vision_transformer import Block, DropPath, HybridEmbed, Mlp
# if os.path.exists('images'):
# shutil.rmtree('images')
# os.makedirs('images', exist_ok=True)
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
return x, H, W
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, H, W):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class WindowedAttention(nn.Module):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
window_size=14,
pad_mode="constant"):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.window_size = window_size
self.pad_mode = pad_mode
def forward(self, x, H, W):
B, N, C = x.shape
N_ = self.window_size * self.window_size
H_ = math.ceil(H / self.window_size) * self.window_size
W_ = math.ceil(W / self.window_size) * self.window_size
qkv = self.qkv(x) # [B, N, C]
qkv = qkv.transpose(1, 2).reshape(B, C * 3, H, W) # [B, C, H, W]
qkv = F.pad(qkv, [0, W_ - W, 0, H_ - H], mode=self.pad_mode)
qkv = F.unfold(qkv,
kernel_size=(self.window_size, self.window_size),
stride=(self.window_size, self.window_size))
B, C_kw_kw, L = qkv.shape # L - the num of windows
qkv = qkv.reshape(B, C * 3, N_, L).permute(0, 3, 2, 1) # [B, L, N_, C]
qkv = qkv.reshape(B, L, N_, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
# q,k,v [B, L, num_head, N_, C/num_head]
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_]
# if self.mask:
# attn = attn * mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn) # [B, L, num_head, N_, N_]
# attn @ v = [B, L, num_head, N_, C/num_head]
x = (attn @ v).permute(0, 2, 4, 3, 1).reshape(B, C_kw_kw // 3, L)
x = F.fold(x,
output_size=(H_, W_),
kernel_size=(self.window_size, self.window_size),
stride=(self.window_size, self.window_size)) # [B, C, H_, W_]
x = x[:, :, :H, :W].reshape(B, C, N).transpose(-1, -2)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
windowed=False,
window_size=14,
pad_mode="constant",
layer_scale=False):
super().__init__()
self.norm1 = norm_layer(dim)
if windowed:
self.attn = WindowedAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
pad_mode=pad_mode)
else:
self.attn = Attention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.layer_scale = layer_scale
if layer_scale:
self.gamma1 = nn.Parameter(torch.ones((dim)), requires_grad=True)
self.gamma2 = nn.Parameter(torch.ones((dim)), requires_grad=True)
def forward(self, x, H, W):
if self.layer_scale:
x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.attn(self.norm1(x.clone()), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class VisionTransformer(timm.models.vision_transformer.VisionTransformer, nn.Module):
""" Vision Transformer with support for global average pooling
"""
def __init__(self,
global_pool=False,
mask_ratio=None,
mask_type='random',
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
hybrid_backbone=None,
norm_layer=nn.LayerNorm,
window_attn=False,
window_size=14):
nn.Module.__init__(self)
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
window_attn = [window_attn] * depth if not isinstance(window_attn, list) else window_attn
window_size = [window_size] * depth if not isinstance(window_size, list) else window_size
self.window_attn = window_attn
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
# self.blocks = nn.ModuleList([
# Block(dim=embed_dim,
# num_heads=num_heads,
# mlp_ratio=mlp_ratio,
# qkv_bias=qkv_bias,
# qk_scale=qk_scale,
# drop=drop_rate,
# attn_drop=attn_drop_rate,
# drop_path=dpr[i],
# norm_layer=norm_layer) for i in range(depth)
# ])
self.blocks = nn.ModuleList([
Block(dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
windowed=window_attn[i],
window_size=window_size[i]) for i in range(depth)
])
self.norm = norm_layer(embed_dim)
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
#self.repr = nn.Linear(embed_dim, representation_size)
#self.repr_act = nn.Tanh()
# Classifier head
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
self.global_pool = global_pool
self.mask_ratio = mask_ratio
self.mask_type = mask_type
if mask_ratio is not None:
assert self.mask_type == 'uniform'
print(f'mask_ratio: {mask_ratio}, mask_type: {mask_type}')
if self.global_pool:
norm_layer = norm_layer
embed_dim = embed_dim
self.fc_norm = norm_layer(embed_dim)
del self.norm # remove the original norm
def masking(self, x, H, W):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - self.mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
if True: # self.mask_type == 'uniform'
M = int(L**0.5)
noise = rearrange(noise, 'n (h p1 w p2) -> (n h w) (p1 p2)', n=N, p1=2, p2=2, h=M // 2, w=M // 2)
if self.mask_ratio == 0.75:
index = noise.min(-1)[1]
noise[range(len(index)), index] = -1
H, W = H // 2, W // 2
elif self.mask_ratio == 0.5:
index = noise.topk(k=2, dim=-1, largest=False)[1]
noise[range(len(index)), index[:, 0]] = -len(index) + torch.arange(
(len(index)), device=x.device).float()
noise[range(len(index)), index[:, 1]] = -len(index) + torch.arange(
(len(index)), device=x.device).float()
H, W = H // 2, W
else:
raise NotImplementedError
noise = rearrange(noise, '(n h w) (p1 p2)-> n (h p1 w p2) ', n=N, p1=2, p2=2, h=M // 2, w=M // 2)
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# to save memory, do not calculate the mask
mask = None
# ids_restore = torch.argsort(ids_shuffle, dim=1)
# # generate the binary mask: 0 is keep, 1 is remove
# mask = torch.ones([N, L], device=x.device)
# mask[:, :len_keep] = 0
# # unshuffle to get the binary mask
# mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, H, W
def forward_features(self, x):
B, _, HH, WW = x.shape
# img = x.clone()
x, H, W = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
if self.mask_ratio is not None and self.training:
x, mask, H, W = self.masking(x, H, W)
# save image
# mean = np.array(IMAGENET_DEFAULT_MEAN).reshape(1, 1, -1)
# std = np.array(IMAGENET_DEFAULT_STD).reshape(1, 1, -1)
# N, L = mask.shape
# M = int(L**0.5)
# mask = mask.reshape(N, M, M)
# mask = mask.repeat_interleave(HH // M, 1).repeat_interleave(WW // M, 2).unsqueeze(1).contiguous().permute(
# 0, 2, 3, 1).cpu().numpy() # (N, H, W, 1)
# img = img.permute(0, 2, 3, 1).cpu().numpy()
# for i in range(N):
# real_img = cv2.cvtColor(np.uint8(255 * ((img[i] * std) + mean)), cv2.COLOR_RGB2BGR)
# mask_img = cv2.cvtColor(np.uint8(255 * ((img[i] * (1 - mask[i]) * std) + mean)), cv2.COLOR_RGB2BGR)
# cv2.imwrite(f'images/{img[i][:2,0,0]}.png', np.concatenate([real_img, mask_img], 1))
# append cls token
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
cls_tokens = cls_tokens + self.pos_embed[:, :1, :]
x = torch.cat((cls_tokens, x), dim=1)
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
if self.window_attn[i]:
x[:, 1:, :] = blk(x[:, 1:, :], H, W)
else:
x = blk(x, H, W)
if self.global_pool:
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
outcome = self.fc_norm(x)
else:
x = self.norm(x)
outcome = x[:, 0]
return outcome
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def vitdet_base_patch16(**kwargs):
model = VisionTransformer(patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_attn=[True, True, False] * 4,
window_size=[14, 14, None] * 4,
**kwargs)
return model
def vitdet_large_patch16(**kwargs):
model = VisionTransformer(patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_attn=[True, True, True, True, True, False] * 4,
window_size=[14, 14, 14, 14, 14, None] * 4,
**kwargs)
return model
def vitdet_huge_patch14(**kwargs):
model = VisionTransformer(patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_attn=[True, True, True, True, True, True, True, False] * 4,
window_size=[14, 14, 14, 14, 14, 14, 14, None] * 4,
**kwargs)
return model