-
Notifications
You must be signed in to change notification settings - Fork 13
/
data.py
53 lines (39 loc) · 2.39 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from config import *
from easydl import *
from collections import Counter
from torchvision.transforms.transforms import *
from torch.utils.data import DataLoader, WeightedRandomSampler
source_classes = [i for i in range(args.data.dataset.n_total)]
target_classes = [i for i in range(args.data.dataset.n_share)]
train_transform = Compose([
Resize(256),
RandomCrop(224),
RandomHorizontalFlip(),
ToTensor(),
])
test_transform = Compose([
Resize(256),
CenterCrop(224),
ToTensor(),
])
source_train_ds = FileListDataset(list_path=source_file, path_prefix=dataset.prefixes[args.data.dataset.source],
transform=train_transform, filter=(lambda x: x in source_classes))
source_test_ds = FileListDataset(list_path=source_file,path_prefix=dataset.prefixes[args.data.dataset.source],
transform=test_transform, filter=(lambda x: x in source_classes))
target_train_ds = FileListDataset(list_path=target_file, path_prefix=dataset.prefixes[args.data.dataset.target],
transform=train_transform, filter=(lambda x: x in target_classes))
target_test_ds = FileListDataset(list_path=target_file, path_prefix=dataset.prefixes[args.data.dataset.target],
transform=test_transform, filter=(lambda x: x in target_classes))
classes = source_train_ds.labels
freq = Counter(classes)
class_weight = {x : 1.0 / freq[x] if args.data.dataloader.class_balance else 1.0 for x in freq}
source_weights = [class_weight[x] for x in source_train_ds.labels]
sampler = WeightedRandomSampler(source_weights, len(source_train_ds.labels))
source_train_dl = DataLoader(dataset=source_train_ds, batch_size=args.data.dataloader.batch_size,
sampler=sampler, num_workers=args.data.dataloader.data_workers, drop_last=True)
source_test_dl = DataLoader(dataset=source_test_ds, batch_size=args.data.dataloader.batch_size, shuffle=False,
num_workers=1, drop_last=False)
target_train_dl = DataLoader(dataset=target_train_ds, batch_size=args.data.dataloader.batch_size,shuffle=True,
num_workers=args.data.dataloader.data_workers, drop_last=True)
target_test_dl = DataLoader(dataset=target_test_ds, batch_size=args.data.dataloader.batch_size, shuffle=False,
num_workers=1, drop_last=False)