forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hidato_sat.py
191 lines (161 loc) · 6 KB
/
hidato_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solves the Hidato problem with the CP-SAT solver."""
from __future__ import print_function
from ortools.sat.python import visualization
from ortools.sat.python import cp_model
def build_pairs(rows, cols):
"""Build closeness pairs for consecutive numbers.
Build set of allowed pairs such that two consecutive numbers touch
each other in the grid.
Returns:
A list of pairs for allowed consecutive position of numbers.
Args:
rows: the number of rows in the grid
cols: the number of columns in the grid
"""
return [
(x * cols + y, (x + dx) * cols + (y + dy)) for x in range(rows)
for y in range(cols) for dx in (-1, 0, 1)
for dy in (-1, 0, 1)
if (x + dx >= 0 and x + dx < rows and y + dy >= 0 and y + dy < cols and
(dx != 0 or dy != 0))
]
def print_solution(positions, rows, cols):
"""Print a current solution."""
# Create empty board.
board = []
for _ in range(rows):
board.append([0] * cols)
# Fill board with solution value.
for k in range(rows * cols):
position = positions[k]
board[position // cols][position % cols] = k + 1
# Print the board.
print('Solution')
print_matrix(board)
def print_matrix(game):
"""Pretty print of a matrix."""
rows = len(game)
cols = len(game[0])
for i in range(rows):
line = ''
for j in range(cols):
if game[i][j] == 0:
line += ' .'
else:
line += '% 3s' % game[i][j]
print(line)
def build_puzzle(problem):
"""Build the problem from its index."""
#
# models, a 0 indicates an open cell which number is not yet known.
#
#
puzzle = None
if problem == 1:
# Simple problem
puzzle = [[6, 0, 9], [0, 2, 8], [1, 0, 0]]
elif problem == 2:
puzzle = [[0, 44, 41, 0, 0, 0, 0], [0, 43, 0, 28, 29, 0, 0],
[0, 1, 0, 0, 0, 33, 0], [0, 2, 25, 4, 34, 0, 36],
[49, 16, 0, 23, 0, 0, 0], [0, 19, 0, 0, 12, 7,
0], [0, 0, 0, 14, 0, 0, 0]]
elif problem == 3:
# Problems from the book:
# Gyora Bededek: "Hidato: 2000 Pure Logic Puzzles"
# Problem 1 (Practice)
puzzle = [[0, 0, 20, 0, 0], [0, 0, 0, 16, 18], [22, 0, 15, 0, 0],
[23, 0, 1, 14, 11], [0, 25, 0, 0, 12]]
elif problem == 4:
# problem 2 (Practice)
puzzle = [[0, 0, 0, 0, 14], [0, 18, 12, 0, 0], [0, 0, 17, 4, 5],
[0, 0, 7, 0, 0], [9, 8, 25, 1, 0]]
elif problem == 5:
# problem 3 (Beginner)
puzzle = [[0, 26, 0, 0, 0, 18], [0, 0, 27, 0, 0, 19],
[31, 23, 0, 0, 14, 0], [0, 33, 8, 0, 15, 1],
[0, 0, 0, 5, 0, 0], [35, 36, 0, 10, 0, 0]]
elif problem == 6:
# Problem 15 (Intermediate)
puzzle = [[64, 0, 0, 0, 0, 0, 0, 0], [1, 63, 0, 59, 15, 57, 53, 0],
[0, 4, 0, 14, 0, 0, 0, 0], [3, 0, 11, 0, 20, 19, 0,
50], [0, 0, 0, 0, 22, 0, 48, 40],
[9, 0, 0, 32, 23, 0, 0, 41], [27, 0, 0, 0, 36, 0, 46,
0], [28, 30, 0, 35, 0, 0, 0, 0]]
return puzzle
def solve_hidato(puzzle, index):
"""Solve the given hidato table."""
# Create the model.
model = cp_model.CpModel()
r = len(puzzle)
c = len(puzzle[0])
if not visualization.RunFromIPython():
print('')
print('----- Solving problem %i -----' % index)
print('')
print(('Initial game (%i x %i)' % (r, c)))
print_matrix(puzzle)
#
# declare variables
#
positions = [
model.NewIntVar(0, r * c - 1, 'p[%i]' % i) for i in range(r * c)
]
#
# constraints
#
model.AddAllDifferent(positions)
#
# Fill in the clues
#
for i in range(r):
for j in range(c):
if puzzle[i][j] > 0:
model.Add(positions[puzzle[i][j] - 1] == i * c + j)
# Consecutive numbers much touch each other in the grid.
# We use an allowed assignment constraint to model it.
close_tuples = build_pairs(r, c)
for k in range(0, r * c - 1):
model.AddAllowedAssignments([positions[k], positions[k + 1]],
close_tuples)
#
# solution and search
#
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.FEASIBLE:
if visualization.RunFromIPython():
output = visualization.SvgWrapper(10, r, 40.0)
for i, var in enumerate(positions):
val = solver.Value(var)
x = val % c
y = val // c
color = 'white' if puzzle[y][x] == 0 else 'lightgreen'
output.AddRectangle(x, r - y - 1, 1, 1, color, 'black',
str(i + 1))
output.AddTitle('Puzzle %i solved in %f s' % (index,
solver.WallTime()))
output.Display()
else:
print_solution(
[solver.Value(x) for x in positions],
r,
c,
)
print('Statistics')
print(' - conflicts : %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time : %f s' % solver.WallTime())
for pb in range(1, 7):
solve_hidato(build_puzzle(pb), pb)