forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
timetable_edgefinding.h
129 lines (108 loc) · 4.88 KB
/
timetable_edgefinding.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_TIMETABLE_EDGEFINDING_H_
#define OR_TOOLS_SAT_TIMETABLE_EDGEFINDING_H_
#include <vector>
#include "ortools/base/int_type.h"
#include "ortools/base/macros.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/intervals.h"
#include "ortools/sat/sat_base.h"
namespace operations_research {
namespace sat {
// TimeTableEdgeFinding implements the timetable edge finding filtering rule
// presented in Vilim Petr, "Timetable edge finding filtering algorithm for
// discrete cumulative resources", CPAIOR 2011,
// http://vilim.eu/petr/cpaior2011.pdf.
//
// This propagator runs in O(n^2) where n is the number of tasks. It increases
// both the start times and decreases the ending times of the tasks.
//
// Note that this propagator does not ensure that the cumulative constraint
// holds. It should thus always be used with at least a timetable propagator.
//
// ALOGRITHM:
//
// The algorithm relies on free tasks. A free task is basically a task without
// its mandatory part. For instance:
//
// s_min s_max e_min e_max
// v v v v
// task: =============================
// ^ ^ ^
// | free part | Mandatory part |
//
// Obviously, the free part of a task that has no mandatory part is equal to the
// task itself. Also, a free part cannot have a mandatory part by definition. A
// fixed task thus have no free part.
//
// The idea of the algorithm is to use free and mandatory parts separately to
// have a better estimation of the energy contained in a task interval.
//
// If the sum of the energy of all the free parts and mandatory subparts
// contained in a task interval exceeds the amount of energy available, then the
// problem is unfeasible. A task thus cannot be scheduled at its minimum start
// time if this would cause an overload in one of the task intervals.
class TimeTableEdgeFinding : public PropagatorInterface {
public:
TimeTableEdgeFinding(const std::vector<AffineExpression>& demands,
AffineExpression capacity,
SchedulingConstraintHelper* helper,
IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
// Build the timetable and fills the mandatory_energy_before_start_min_ and
// mandatory_energy_before_end_max_.
//
// TODO(user): Share the profile building code with TimeTablingPerTask ! we do
// not really need the mandatory_energy_before_* vectors and can recompute the
// profile integral in a window efficiently during TimeTableEdgeFindingPass().
void BuildTimeTable();
// Performs a single pass of the Timetable Edge Finding filtering rule to
// updates the start time of the tasks. This same function can be used to
// update the end times by calling the SwitchToMirrorProblem method first.
bool TimeTableEdgeFindingPass();
// Increases the start min of task_index with the proper explanation.
bool IncreaseStartMin(IntegerValue begin, IntegerValue end, int task_index,
IntegerValue new_start);
IntegerValue DemandMin(int task_index) const {
return integer_trail_->LowerBound(demands_[task_index]);
}
IntegerValue CapacityMax() const {
return integer_trail_->UpperBound(capacity_);
}
// Number of tasks.
const int num_tasks_;
// IntervalVariable and IntegerVariable of each tasks that must be considered
// in this constraint.
std::vector<AffineExpression> demands_;
const AffineExpression capacity_;
SchedulingConstraintHelper* helper_;
IntegerTrail* integer_trail_;
// Start (resp. end) of the compulsory parts used to build the profile.
std::vector<TaskTime> scp_;
std::vector<TaskTime> ecp_;
// Sizes and energy of the free parts. One is just the other times the
// minimum demand.
std::vector<IntegerValue> size_free_;
std::vector<IntegerValue> energy_free_;
// Energy contained in the time table before the start min (resp. end max)
// of each task.
std::vector<IntegerValue> mandatory_energy_before_start_min_;
std::vector<IntegerValue> mandatory_energy_before_end_max_;
DISALLOW_COPY_AND_ASSIGN(TimeTableEdgeFinding);
};
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_TIMETABLE_EDGEFINDING_H_